The Urban Observatory: A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems
We describe an “Urban Observatory” facility designed for the study of complex urban systems via persistent, synoptic, and granular imaging of dynamical processes in cities. An initial deployment of the facility has been demonstrated in New York City and consists of a suite of imaging systems—both br...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-04, Vol.13 (8) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 13 |
creator | Dobler, Gregory Bianco, Federica B. Sharma, Mohit S. Karpf, Andreas Baur, Julien Ghandehari, Masoud Wurtele, Jonathan Koonin, Steven E. |
description | We describe an “Urban Observatory” facility designed for the study of complex urban systems via persistent, synoptic, and granular imaging of dynamical processes in cities. An initial deployment of the facility has been demonstrated in New York City and consists of a suite of imaging systems—both broadband and hyperspectral—sensitive to wavelengths from the visible (~400 nm) to the infrared (~13 micron) operating at cadences of ~0.01–30 Hz (characteristically ~0.1 Hz). Much like an astronomical survey, the facility generates a large imaging catalog from which we have extracted observables (e.g., time-dependent brightnesses, spectra, temperatures, chemical species, etc.), collecting them in a parallel source catalog. We have demonstrated that, in addition to the urban science of cities as systems, these data are applicable to a myriad of domain-specific scientific inquiries related to urban functioning including energy consumption and end use, environmental impacts of cities, and patterns of life and public health. We show that an Urban Observatory facility of this type has the potential to improve both a city’s operations and the quality of life of its inhabitants. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1848293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1848293</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18482933</originalsourceid><addsrcrecordid>eNqNjLsKwkAURBdRUNR_uNgHkk1AYyc-0CIoJNZhXTdmZR-SexXz96awsHSKmVPMTI-NeDjnQcJT3v_hIZsi3sNOcRylYTJidVErODcX4eB4QdW8BPmmXcIKsqchHWT-KgwcrLhpd4OTEVT5xkJnQN0yp-e1BV_BpnXCaomgHay9fRj1_t7mLZKyOGGDShhU02-O2Wy3Ldb7wCPpEqUmJWvpnVOSymiRLHgax3-VPsXWSJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Urban Observatory: A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dobler, Gregory ; Bianco, Federica B. ; Sharma, Mohit S. ; Karpf, Andreas ; Baur, Julien ; Ghandehari, Masoud ; Wurtele, Jonathan ; Koonin, Steven E.</creator><creatorcontrib>Dobler, Gregory ; Bianco, Federica B. ; Sharma, Mohit S. ; Karpf, Andreas ; Baur, Julien ; Ghandehari, Masoud ; Wurtele, Jonathan ; Koonin, Steven E. ; New York Univ. (NYU), NY (United States)</creatorcontrib><description>We describe an “Urban Observatory” facility designed for the study of complex urban systems via persistent, synoptic, and granular imaging of dynamical processes in cities. An initial deployment of the facility has been demonstrated in New York City and consists of a suite of imaging systems—both broadband and hyperspectral—sensitive to wavelengths from the visible (~400 nm) to the infrared (~13 micron) operating at cadences of ~0.01–30 Hz (characteristically ~0.1 Hz). Much like an astronomical survey, the facility generates a large imaging catalog from which we have extracted observables (e.g., time-dependent brightnesses, spectra, temperatures, chemical species, etc.), collecting them in a parallel source catalog. We have demonstrated that, in addition to the urban science of cities as systems, these data are applicable to a myriad of domain-specific scientific inquiries related to urban functioning including energy consumption and end use, environmental impacts of cities, and patterns of life and public health. We show that an Urban Observatory facility of this type has the potential to improve both a city’s operations and the quality of life of its inhabitants.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><language>eng</language><publisher>United States: MDPI</publisher><subject>Environmental Sciences & Ecology ; Geology ; Imaging Science & Photographic Technology ; Remote Sensing</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-04, Vol.13 (8)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000292763261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1848293$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dobler, Gregory</creatorcontrib><creatorcontrib>Bianco, Federica B.</creatorcontrib><creatorcontrib>Sharma, Mohit S.</creatorcontrib><creatorcontrib>Karpf, Andreas</creatorcontrib><creatorcontrib>Baur, Julien</creatorcontrib><creatorcontrib>Ghandehari, Masoud</creatorcontrib><creatorcontrib>Wurtele, Jonathan</creatorcontrib><creatorcontrib>Koonin, Steven E.</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><title>The Urban Observatory: A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems</title><title>Remote sensing (Basel, Switzerland)</title><description>We describe an “Urban Observatory” facility designed for the study of complex urban systems via persistent, synoptic, and granular imaging of dynamical processes in cities. An initial deployment of the facility has been demonstrated in New York City and consists of a suite of imaging systems—both broadband and hyperspectral—sensitive to wavelengths from the visible (~400 nm) to the infrared (~13 micron) operating at cadences of ~0.01–30 Hz (characteristically ~0.1 Hz). Much like an astronomical survey, the facility generates a large imaging catalog from which we have extracted observables (e.g., time-dependent brightnesses, spectra, temperatures, chemical species, etc.), collecting them in a parallel source catalog. We have demonstrated that, in addition to the urban science of cities as systems, these data are applicable to a myriad of domain-specific scientific inquiries related to urban functioning including energy consumption and end use, environmental impacts of cities, and patterns of life and public health. We show that an Urban Observatory facility of this type has the potential to improve both a city’s operations and the quality of life of its inhabitants.</description><subject>Environmental Sciences & Ecology</subject><subject>Geology</subject><subject>Imaging Science & Photographic Technology</subject><subject>Remote Sensing</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjLsKwkAURBdRUNR_uNgHkk1AYyc-0CIoJNZhXTdmZR-SexXz96awsHSKmVPMTI-NeDjnQcJT3v_hIZsi3sNOcRylYTJidVErODcX4eB4QdW8BPmmXcIKsqchHWT-KgwcrLhpd4OTEVT5xkJnQN0yp-e1BV_BpnXCaomgHay9fRj1_t7mLZKyOGGDShhU02-O2Wy3Ldb7wCPpEqUmJWvpnVOSymiRLHgax3-VPsXWSJ0</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Dobler, Gregory</creator><creator>Bianco, Federica B.</creator><creator>Sharma, Mohit S.</creator><creator>Karpf, Andreas</creator><creator>Baur, Julien</creator><creator>Ghandehari, Masoud</creator><creator>Wurtele, Jonathan</creator><creator>Koonin, Steven E.</creator><general>MDPI</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000292763261</orcidid></search><sort><creationdate>20210401</creationdate><title>The Urban Observatory: A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems</title><author>Dobler, Gregory ; Bianco, Federica B. ; Sharma, Mohit S. ; Karpf, Andreas ; Baur, Julien ; Ghandehari, Masoud ; Wurtele, Jonathan ; Koonin, Steven E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18482933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Environmental Sciences & Ecology</topic><topic>Geology</topic><topic>Imaging Science & Photographic Technology</topic><topic>Remote Sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobler, Gregory</creatorcontrib><creatorcontrib>Bianco, Federica B.</creatorcontrib><creatorcontrib>Sharma, Mohit S.</creatorcontrib><creatorcontrib>Karpf, Andreas</creatorcontrib><creatorcontrib>Baur, Julien</creatorcontrib><creatorcontrib>Ghandehari, Masoud</creatorcontrib><creatorcontrib>Wurtele, Jonathan</creatorcontrib><creatorcontrib>Koonin, Steven E.</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobler, Gregory</au><au>Bianco, Federica B.</au><au>Sharma, Mohit S.</au><au>Karpf, Andreas</au><au>Baur, Julien</au><au>Ghandehari, Masoud</au><au>Wurtele, Jonathan</au><au>Koonin, Steven E.</au><aucorp>New York Univ. (NYU), NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Urban Observatory: A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>13</volume><issue>8</issue><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>We describe an “Urban Observatory” facility designed for the study of complex urban systems via persistent, synoptic, and granular imaging of dynamical processes in cities. An initial deployment of the facility has been demonstrated in New York City and consists of a suite of imaging systems—both broadband and hyperspectral—sensitive to wavelengths from the visible (~400 nm) to the infrared (~13 micron) operating at cadences of ~0.01–30 Hz (characteristically ~0.1 Hz). Much like an astronomical survey, the facility generates a large imaging catalog from which we have extracted observables (e.g., time-dependent brightnesses, spectra, temperatures, chemical species, etc.), collecting them in a parallel source catalog. We have demonstrated that, in addition to the urban science of cities as systems, these data are applicable to a myriad of domain-specific scientific inquiries related to urban functioning including energy consumption and end use, environmental impacts of cities, and patterns of life and public health. We show that an Urban Observatory facility of this type has the potential to improve both a city’s operations and the quality of life of its inhabitants.</abstract><cop>United States</cop><pub>MDPI</pub><orcidid>https://orcid.org/0000000292763261</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2021-04, Vol.13 (8) |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_osti_scitechconnect_1848293 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Environmental Sciences & Ecology Geology Imaging Science & Photographic Technology Remote Sensing |
title | The Urban Observatory: A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Urban%20Observatory:%20A%20Multi-Modal%20Imaging%20Platform%20for%20the%20Study%20of%20Dynamics%20in%20Complex%20Urban%20Systems&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Dobler,%20Gregory&rft.aucorp=New%20York%20Univ.%20(NYU),%20NY%20(United%20States)&rft.date=2021-04-01&rft.volume=13&rft.issue=8&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/&rft_dat=%3Costi%3E1848293%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |