Root anatomy and soil resource capture
Background Suboptimal water and nutrient availability are primary constraints in global agriculture. Root anatomy plays key roles in soil resource acquisition. In this article we summarize evidence that root anatomical phenotypes present opportunities for crop breeding. Scope Root anatomical phenoty...
Gespeichert in:
Veröffentlicht in: | Plant and soil 2021-09, Vol.466 (1/2), p.21-63 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 1/2 |
container_start_page | 21 |
container_title | Plant and soil |
container_volume | 466 |
creator | Lynch, Jonathan P. Strock, Christopher F. Schneider, Hannah M. Sidhu, Jagdeep Singh Ajmera, Ishan Galindo-Castañeda, Tania Klein, Stephanie P. Hanlon, Meredith T. |
description | Background
Suboptimal water and nutrient availability are primary constraints in global agriculture. Root anatomy plays key roles in soil resource acquisition. In this article we summarize evidence that root anatomical phenotypes present opportunities for crop breeding.
Scope
Root anatomical phenotypes influence soil resource acquisition by regulating the metabolic cost of soil exploration, exploitation of the rhizosphere, the penetration of hard soil domains, the axial and radial transport of water, and interactions with soil biota including mycorrhizal fungi, pathogens, insects, and the rhizosphere microbiome. For each of these topics we provide examples of anatomical phenotypes which merit attention as selection targets for crop improvement. Several cross-cutting issues are addressed including the importance of phenotypic plasticity, integrated phenotypes, C sequestration, in silico modeling, and novel methods to phenotype root anatomy including image analysis tools.
Conclusions
An array of anatomical phenes have substantial importance for the acquisition of water and nutrients. Substantial phenotypic variation exists in crop germplasm. New tools and methods are making it easier to phenotype root anatomy, determine its genetic control, and understand its utility for plant fitness. Root anatomical phenotypes are underutilized yet attractive breeding targets for the development of the efficient, resilient crops urgently needed in global agriculture. |
doi_str_mv | 10.1007/s11104-021-05010-y |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1848273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A675517223</galeid><jstor_id>48694298</jstor_id><sourcerecordid>A675517223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-349989cd9f304ad2e415efaa43f6259d899c738cc1ce5b12a57c735cdc80fa9b3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB9_QBCKgrvUPCeTZSm-oCCIgruQ3knqlHZSk3Qx_97UEd1JFpcbvnPu4SB0QcmEEqJuE6WUCEwYxUQSSnB_gEZUKo4l4dUhGhHCGSZKvx-jk5RWZL_TaoRuXkLIY9vZHDZ9mc04hXY9ji6FXQQ3BrvNu-jO0JG36-TOf-Yperu_e5094vnzw9NsOscgqcqYC61rDY32nAjbMCeodN5awX3FpG5qrUHxGoCCkwvKrFRll9BATbzVC36KrgbfkHJrErTZwQeErnOQDa1FzRQv0PUAbWP43LmUzaqE7Uouw6RiXIpKy0JNBmpp1860nQ85WiivcZu2WDrflv9ppWSJztjelg0CiCGl6LzZxnZjY28oMfuWzdCyKS2b75ZNX0R8EKUCd0sX_7L8q7ocVKuUQ_y9I-pKC6Zr_gW9Uod4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572354695</pqid></control><display><type>article</type><title>Root anatomy and soil resource capture</title><source>Springer Nature - Complete Springer Journals</source><creator>Lynch, Jonathan P. ; Strock, Christopher F. ; Schneider, Hannah M. ; Sidhu, Jagdeep Singh ; Ajmera, Ishan ; Galindo-Castañeda, Tania ; Klein, Stephanie P. ; Hanlon, Meredith T.</creator><creatorcontrib>Lynch, Jonathan P. ; Strock, Christopher F. ; Schneider, Hannah M. ; Sidhu, Jagdeep Singh ; Ajmera, Ishan ; Galindo-Castañeda, Tania ; Klein, Stephanie P. ; Hanlon, Meredith T. ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>Background
Suboptimal water and nutrient availability are primary constraints in global agriculture. Root anatomy plays key roles in soil resource acquisition. In this article we summarize evidence that root anatomical phenotypes present opportunities for crop breeding.
Scope
Root anatomical phenotypes influence soil resource acquisition by regulating the metabolic cost of soil exploration, exploitation of the rhizosphere, the penetration of hard soil domains, the axial and radial transport of water, and interactions with soil biota including mycorrhizal fungi, pathogens, insects, and the rhizosphere microbiome. For each of these topics we provide examples of anatomical phenotypes which merit attention as selection targets for crop improvement. Several cross-cutting issues are addressed including the importance of phenotypic plasticity, integrated phenotypes, C sequestration, in silico modeling, and novel methods to phenotype root anatomy including image analysis tools.
Conclusions
An array of anatomical phenes have substantial importance for the acquisition of water and nutrients. Substantial phenotypic variation exists in crop germplasm. New tools and methods are making it easier to phenotype root anatomy, determine its genetic control, and understand its utility for plant fitness. Root anatomical phenotypes are underutilized yet attractive breeding targets for the development of the efficient, resilient crops urgently needed in global agriculture.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-021-05010-y</identifier><language>eng</language><publisher>Cham: Springer Science + Business Media</publisher><subject>Agriculture ; Analysis ; Anatomy ; Biomedical and Life Sciences ; Biota ; Carbon sequestration ; Climate change ; Costs ; Crop improvement ; Crop resilience ; Crops ; Cross cutting ; Ecology ; Freshwater resources ; Genetic control ; Germplasm ; Growth ; Image analysis ; Image processing ; Insects ; Life Sciences ; Marschner Review ; MARSCHNER REVIEWS ; Metabolism ; Microbiomes ; Nutrient availability ; Nutrients ; Pathogens ; Phenotype ; Phenotypes ; Phenotypic plasticity ; Phenotypic variations ; Plant breeding ; Plant Physiology ; Plant Sciences ; Rhizosphere ; Roots (Botany) ; Soil fertility ; Soil hardness ; Soil microbiology ; Soil microorganisms ; Soil Science & Conservation ; Soil water ; Soils</subject><ispartof>Plant and soil, 2021-09, Vol.466 (1/2), p.21-63</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Authors 2021. corrected publication 2022</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Authors 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-349989cd9f304ad2e415efaa43f6259d899c738cc1ce5b12a57c735cdc80fa9b3</citedby><cites>FETCH-LOGICAL-c517t-349989cd9f304ad2e415efaa43f6259d899c738cc1ce5b12a57c735cdc80fa9b3</cites><orcidid>0000-0002-8770-5235 ; 0000-0003-1432-8130 ; 0000-0002-7265-9790 ; 0000000272659790 ; 0000000287705235 ; 0000000314328130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11104-021-05010-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11104-021-05010-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1848273$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lynch, Jonathan P.</creatorcontrib><creatorcontrib>Strock, Christopher F.</creatorcontrib><creatorcontrib>Schneider, Hannah M.</creatorcontrib><creatorcontrib>Sidhu, Jagdeep Singh</creatorcontrib><creatorcontrib>Ajmera, Ishan</creatorcontrib><creatorcontrib>Galindo-Castañeda, Tania</creatorcontrib><creatorcontrib>Klein, Stephanie P.</creatorcontrib><creatorcontrib>Hanlon, Meredith T.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Root anatomy and soil resource capture</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background
Suboptimal water and nutrient availability are primary constraints in global agriculture. Root anatomy plays key roles in soil resource acquisition. In this article we summarize evidence that root anatomical phenotypes present opportunities for crop breeding.
Scope
Root anatomical phenotypes influence soil resource acquisition by regulating the metabolic cost of soil exploration, exploitation of the rhizosphere, the penetration of hard soil domains, the axial and radial transport of water, and interactions with soil biota including mycorrhizal fungi, pathogens, insects, and the rhizosphere microbiome. For each of these topics we provide examples of anatomical phenotypes which merit attention as selection targets for crop improvement. Several cross-cutting issues are addressed including the importance of phenotypic plasticity, integrated phenotypes, C sequestration, in silico modeling, and novel methods to phenotype root anatomy including image analysis tools.
Conclusions
An array of anatomical phenes have substantial importance for the acquisition of water and nutrients. Substantial phenotypic variation exists in crop germplasm. New tools and methods are making it easier to phenotype root anatomy, determine its genetic control, and understand its utility for plant fitness. Root anatomical phenotypes are underutilized yet attractive breeding targets for the development of the efficient, resilient crops urgently needed in global agriculture.</description><subject>Agriculture</subject><subject>Analysis</subject><subject>Anatomy</subject><subject>Biomedical and Life Sciences</subject><subject>Biota</subject><subject>Carbon sequestration</subject><subject>Climate change</subject><subject>Costs</subject><subject>Crop improvement</subject><subject>Crop resilience</subject><subject>Crops</subject><subject>Cross cutting</subject><subject>Ecology</subject><subject>Freshwater resources</subject><subject>Genetic control</subject><subject>Germplasm</subject><subject>Growth</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Marschner Review</subject><subject>MARSCHNER REVIEWS</subject><subject>Metabolism</subject><subject>Microbiomes</subject><subject>Nutrient availability</subject><subject>Nutrients</subject><subject>Pathogens</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotypic plasticity</subject><subject>Phenotypic variations</subject><subject>Plant breeding</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Rhizosphere</subject><subject>Roots (Botany)</subject><subject>Soil fertility</subject><subject>Soil hardness</subject><subject>Soil microbiology</subject><subject>Soil microorganisms</subject><subject>Soil Science & Conservation</subject><subject>Soil water</subject><subject>Soils</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWB9_QBCKgrvUPCeTZSm-oCCIgruQ3knqlHZSk3Qx_97UEd1JFpcbvnPu4SB0QcmEEqJuE6WUCEwYxUQSSnB_gEZUKo4l4dUhGhHCGSZKvx-jk5RWZL_TaoRuXkLIY9vZHDZ9mc04hXY9ji6FXQQ3BrvNu-jO0JG36-TOf-Yperu_e5094vnzw9NsOscgqcqYC61rDY32nAjbMCeodN5awX3FpG5qrUHxGoCCkwvKrFRll9BATbzVC36KrgbfkHJrErTZwQeErnOQDa1FzRQv0PUAbWP43LmUzaqE7Uouw6RiXIpKy0JNBmpp1860nQ85WiivcZu2WDrflv9ppWSJztjelg0CiCGl6LzZxnZjY28oMfuWzdCyKS2b75ZNX0R8EKUCd0sX_7L8q7ocVKuUQ_y9I-pKC6Zr_gW9Uod4</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lynch, Jonathan P.</creator><creator>Strock, Christopher F.</creator><creator>Schneider, Hannah M.</creator><creator>Sidhu, Jagdeep Singh</creator><creator>Ajmera, Ishan</creator><creator>Galindo-Castañeda, Tania</creator><creator>Klein, Stephanie P.</creator><creator>Hanlon, Meredith T.</creator><general>Springer Science + Business Media</general><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Nature</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8770-5235</orcidid><orcidid>https://orcid.org/0000-0003-1432-8130</orcidid><orcidid>https://orcid.org/0000-0002-7265-9790</orcidid><orcidid>https://orcid.org/0000000272659790</orcidid><orcidid>https://orcid.org/0000000287705235</orcidid><orcidid>https://orcid.org/0000000314328130</orcidid></search><sort><creationdate>20210901</creationdate><title>Root anatomy and soil resource capture</title><author>Lynch, Jonathan P. ; Strock, Christopher F. ; Schneider, Hannah M. ; Sidhu, Jagdeep Singh ; Ajmera, Ishan ; Galindo-Castañeda, Tania ; Klein, Stephanie P. ; Hanlon, Meredith T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-349989cd9f304ad2e415efaa43f6259d899c738cc1ce5b12a57c735cdc80fa9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Analysis</topic><topic>Anatomy</topic><topic>Biomedical and Life Sciences</topic><topic>Biota</topic><topic>Carbon sequestration</topic><topic>Climate change</topic><topic>Costs</topic><topic>Crop improvement</topic><topic>Crop resilience</topic><topic>Crops</topic><topic>Cross cutting</topic><topic>Ecology</topic><topic>Freshwater resources</topic><topic>Genetic control</topic><topic>Germplasm</topic><topic>Growth</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Marschner Review</topic><topic>MARSCHNER REVIEWS</topic><topic>Metabolism</topic><topic>Microbiomes</topic><topic>Nutrient availability</topic><topic>Nutrients</topic><topic>Pathogens</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotypic plasticity</topic><topic>Phenotypic variations</topic><topic>Plant breeding</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Rhizosphere</topic><topic>Roots (Botany)</topic><topic>Soil fertility</topic><topic>Soil hardness</topic><topic>Soil microbiology</topic><topic>Soil microorganisms</topic><topic>Soil Science & Conservation</topic><topic>Soil water</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynch, Jonathan P.</creatorcontrib><creatorcontrib>Strock, Christopher F.</creatorcontrib><creatorcontrib>Schneider, Hannah M.</creatorcontrib><creatorcontrib>Sidhu, Jagdeep Singh</creatorcontrib><creatorcontrib>Ajmera, Ishan</creatorcontrib><creatorcontrib>Galindo-Castañeda, Tania</creatorcontrib><creatorcontrib>Klein, Stephanie P.</creatorcontrib><creatorcontrib>Hanlon, Meredith T.</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynch, Jonathan P.</au><au>Strock, Christopher F.</au><au>Schneider, Hannah M.</au><au>Sidhu, Jagdeep Singh</au><au>Ajmera, Ishan</au><au>Galindo-Castañeda, Tania</au><au>Klein, Stephanie P.</au><au>Hanlon, Meredith T.</au><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root anatomy and soil resource capture</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>466</volume><issue>1/2</issue><spage>21</spage><epage>63</epage><pages>21-63</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>Background
Suboptimal water and nutrient availability are primary constraints in global agriculture. Root anatomy plays key roles in soil resource acquisition. In this article we summarize evidence that root anatomical phenotypes present opportunities for crop breeding.
Scope
Root anatomical phenotypes influence soil resource acquisition by regulating the metabolic cost of soil exploration, exploitation of the rhizosphere, the penetration of hard soil domains, the axial and radial transport of water, and interactions with soil biota including mycorrhizal fungi, pathogens, insects, and the rhizosphere microbiome. For each of these topics we provide examples of anatomical phenotypes which merit attention as selection targets for crop improvement. Several cross-cutting issues are addressed including the importance of phenotypic plasticity, integrated phenotypes, C sequestration, in silico modeling, and novel methods to phenotype root anatomy including image analysis tools.
Conclusions
An array of anatomical phenes have substantial importance for the acquisition of water and nutrients. Substantial phenotypic variation exists in crop germplasm. New tools and methods are making it easier to phenotype root anatomy, determine its genetic control, and understand its utility for plant fitness. Root anatomical phenotypes are underutilized yet attractive breeding targets for the development of the efficient, resilient crops urgently needed in global agriculture.</abstract><cop>Cham</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s11104-021-05010-y</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-8770-5235</orcidid><orcidid>https://orcid.org/0000-0003-1432-8130</orcidid><orcidid>https://orcid.org/0000-0002-7265-9790</orcidid><orcidid>https://orcid.org/0000000272659790</orcidid><orcidid>https://orcid.org/0000000287705235</orcidid><orcidid>https://orcid.org/0000000314328130</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-079X |
ispartof | Plant and soil, 2021-09, Vol.466 (1/2), p.21-63 |
issn | 0032-079X 1573-5036 |
language | eng |
recordid | cdi_osti_scitechconnect_1848273 |
source | Springer Nature - Complete Springer Journals |
subjects | Agriculture Analysis Anatomy Biomedical and Life Sciences Biota Carbon sequestration Climate change Costs Crop improvement Crop resilience Crops Cross cutting Ecology Freshwater resources Genetic control Germplasm Growth Image analysis Image processing Insects Life Sciences Marschner Review MARSCHNER REVIEWS Metabolism Microbiomes Nutrient availability Nutrients Pathogens Phenotype Phenotypes Phenotypic plasticity Phenotypic variations Plant breeding Plant Physiology Plant Sciences Rhizosphere Roots (Botany) Soil fertility Soil hardness Soil microbiology Soil microorganisms Soil Science & Conservation Soil water Soils |
title | Root anatomy and soil resource capture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root%20anatomy%20and%20soil%20resource%20capture&rft.jtitle=Plant%20and%20soil&rft.au=Lynch,%20Jonathan%20P.&rft.aucorp=Pennsylvania%20State%20Univ.,%20University%20Park,%20PA%20(United%20States)&rft.date=2021-09-01&rft.volume=466&rft.issue=1/2&rft.spage=21&rft.epage=63&rft.pages=21-63&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-021-05010-y&rft_dat=%3Cgale_osti_%3EA675517223%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572354695&rft_id=info:pmid/&rft_galeid=A675517223&rft_jstor_id=48694298&rfr_iscdi=true |