Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems
Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐c...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-12, Vol.34 (48), p.e2108025-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | e2108025 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Yan, Xiaodong Qian, Justin H. Sangwan, Vinod K. Hersam, Mark C. |
description | Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi‐terminal device concepts are required for more sophisticated bio‐realistic functions. Of particular interest are memtransistors based on low‐dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi‐terminal NVM devices including dual‐gated floating‐gate memories, dual‐gated ferroelectric transistors, and dual‐gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase‐changes properties of nanomaterials. Finally, strategies for achieving wafer‐scale integration of memtransistors and multi‐terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits.
Recent progress and ongoing challenges for memtransistors are reviewed in the context of neuromorphic computing in solid‐state circuits and systems. Gate‐tunable learning and bio‐realistic functions in multi‐terminal synaptic devices are compared for memtransistors and related floating gate and ferroelectric memories, suggesting opportunities for new architectures that are suitable as hardware accelerators for artificial intelligence algorithms. |
doi_str_mv | 10.1002/adma.202108025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1846496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742938627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4005-49927ee1877bad214b3cc6bd93aec92f3f39ba056187ec870e9176076128754e3</originalsourceid><addsrcrecordid>eNqFkEtP4zAURi3ECMpjyxJFzDqd60fseFmVmQGJl8TM2nKcG2rUxMVOhPrvSRUeS1Z3c76jq0PIGYU5BWC_bN3aOQNGoQRW7JEZLRjNBehin8xA8yLXUpSH5CilZwDQEuQBOeSipFwqNSP3DzE8RUwps12dLVd2vcbuCVPWhJjdYttH2yWf-hBT5rvsDocY2hA3K--ypY9u8P00fdymHtt0Qn40dp3w9P0ek_9_fv9bXuU393-vl4ub3AmAIhdaM4VIS6UqWzMqKu6crGrNLTrNGt5wXVko5EigKxWgpkqCkpSVqhDIj8nF5A2p9yY536NbudB16HpDSyGFliP0c4I2MbwMmHrzHIbYjX8ZpgTTvJRMjdR8olwMKUVszCb61satoWB2kc0usvmMPA7O37VD1WL9iX9UHQE9Aa9-jdtvdGZxebv4kr8BoLeHhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742938627</pqid></control><display><type>article</type><title>Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems</title><source>Wiley Online Library All Journals</source><creator>Yan, Xiaodong ; Qian, Justin H. ; Sangwan, Vinod K. ; Hersam, Mark C.</creator><creatorcontrib>Yan, Xiaodong ; Qian, Justin H. ; Sangwan, Vinod K. ; Hersam, Mark C.</creatorcontrib><description>Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi‐terminal device concepts are required for more sophisticated bio‐realistic functions. Of particular interest are memtransistors based on low‐dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi‐terminal NVM devices including dual‐gated floating‐gate memories, dual‐gated ferroelectric transistors, and dual‐gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase‐changes properties of nanomaterials. Finally, strategies for achieving wafer‐scale integration of memtransistors and multi‐terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits.
Recent progress and ongoing challenges for memtransistors are reviewed in the context of neuromorphic computing in solid‐state circuits and systems. Gate‐tunable learning and bio‐realistic functions in multi‐terminal synaptic devices are compared for memtransistors and related floating gate and ferroelectric memories, suggesting opportunities for new architectures that are suitable as hardware accelerators for artificial intelligence algorithms.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202108025</identifier><identifier>PMID: 34813677</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Artificial intelligence ; Circuits ; Computer architecture ; Data processing ; Ferroelectricity ; gate‐tunable devices ; Heterojunctions ; Materials science ; memristors ; Nanomaterials ; Neural networks ; non‐volatile memory ; Switches ; Transistors ; Tunnel junctions ; van der Waals materials</subject><ispartof>Advanced materials (Weinheim), 2022-12, Vol.34 (48), p.e2108025-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4005-49927ee1877bad214b3cc6bd93aec92f3f39ba056187ec870e9176076128754e3</citedby><cites>FETCH-LOGICAL-c4005-49927ee1877bad214b3cc6bd93aec92f3f39ba056187ec870e9176076128754e3</cites><orcidid>0000-0002-5623-5285 ; 0000-0002-7737-6984 ; 0000-0003-4120-1426 ; 0000000277376984 ; 0000000341201426 ; 0000000256235285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202108025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202108025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34813677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1846496$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Xiaodong</creatorcontrib><creatorcontrib>Qian, Justin H.</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><title>Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi‐terminal device concepts are required for more sophisticated bio‐realistic functions. Of particular interest are memtransistors based on low‐dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi‐terminal NVM devices including dual‐gated floating‐gate memories, dual‐gated ferroelectric transistors, and dual‐gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase‐changes properties of nanomaterials. Finally, strategies for achieving wafer‐scale integration of memtransistors and multi‐terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits.
Recent progress and ongoing challenges for memtransistors are reviewed in the context of neuromorphic computing in solid‐state circuits and systems. Gate‐tunable learning and bio‐realistic functions in multi‐terminal synaptic devices are compared for memtransistors and related floating gate and ferroelectric memories, suggesting opportunities for new architectures that are suitable as hardware accelerators for artificial intelligence algorithms.</description><subject>Artificial intelligence</subject><subject>Circuits</subject><subject>Computer architecture</subject><subject>Data processing</subject><subject>Ferroelectricity</subject><subject>gate‐tunable devices</subject><subject>Heterojunctions</subject><subject>Materials science</subject><subject>memristors</subject><subject>Nanomaterials</subject><subject>Neural networks</subject><subject>non‐volatile memory</subject><subject>Switches</subject><subject>Transistors</subject><subject>Tunnel junctions</subject><subject>van der Waals materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP4zAURi3ECMpjyxJFzDqd60fseFmVmQGJl8TM2nKcG2rUxMVOhPrvSRUeS1Z3c76jq0PIGYU5BWC_bN3aOQNGoQRW7JEZLRjNBehin8xA8yLXUpSH5CilZwDQEuQBOeSipFwqNSP3DzE8RUwps12dLVd2vcbuCVPWhJjdYttH2yWf-hBT5rvsDocY2hA3K--ypY9u8P00fdymHtt0Qn40dp3w9P0ek_9_fv9bXuU393-vl4ub3AmAIhdaM4VIS6UqWzMqKu6crGrNLTrNGt5wXVko5EigKxWgpkqCkpSVqhDIj8nF5A2p9yY536NbudB16HpDSyGFliP0c4I2MbwMmHrzHIbYjX8ZpgTTvJRMjdR8olwMKUVszCb61satoWB2kc0usvmMPA7O37VD1WL9iX9UHQE9Aa9-jdtvdGZxebv4kr8BoLeHhQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Yan, Xiaodong</creator><creator>Qian, Justin H.</creator><creator>Sangwan, Vinod K.</creator><creator>Hersam, Mark C.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5623-5285</orcidid><orcidid>https://orcid.org/0000-0002-7737-6984</orcidid><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000000277376984</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid><orcidid>https://orcid.org/0000000256235285</orcidid></search><sort><creationdate>20221201</creationdate><title>Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems</title><author>Yan, Xiaodong ; Qian, Justin H. ; Sangwan, Vinod K. ; Hersam, Mark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4005-49927ee1877bad214b3cc6bd93aec92f3f39ba056187ec870e9176076128754e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Circuits</topic><topic>Computer architecture</topic><topic>Data processing</topic><topic>Ferroelectricity</topic><topic>gate‐tunable devices</topic><topic>Heterojunctions</topic><topic>Materials science</topic><topic>memristors</topic><topic>Nanomaterials</topic><topic>Neural networks</topic><topic>non‐volatile memory</topic><topic>Switches</topic><topic>Transistors</topic><topic>Tunnel junctions</topic><topic>van der Waals materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiaodong</creatorcontrib><creatorcontrib>Qian, Justin H.</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiaodong</au><au>Qian, Justin H.</au><au>Sangwan, Vinod K.</au><au>Hersam, Mark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>34</volume><issue>48</issue><spage>e2108025</spage><epage>n/a</epage><pages>e2108025-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi‐terminal device concepts are required for more sophisticated bio‐realistic functions. Of particular interest are memtransistors based on low‐dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi‐terminal NVM devices including dual‐gated floating‐gate memories, dual‐gated ferroelectric transistors, and dual‐gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase‐changes properties of nanomaterials. Finally, strategies for achieving wafer‐scale integration of memtransistors and multi‐terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits.
Recent progress and ongoing challenges for memtransistors are reviewed in the context of neuromorphic computing in solid‐state circuits and systems. Gate‐tunable learning and bio‐realistic functions in multi‐terminal synaptic devices are compared for memtransistors and related floating gate and ferroelectric memories, suggesting opportunities for new architectures that are suitable as hardware accelerators for artificial intelligence algorithms.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34813677</pmid><doi>10.1002/adma.202108025</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5623-5285</orcidid><orcidid>https://orcid.org/0000-0002-7737-6984</orcidid><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000000277376984</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid><orcidid>https://orcid.org/0000000256235285</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-12, Vol.34 (48), p.e2108025-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1846496 |
source | Wiley Online Library All Journals |
subjects | Artificial intelligence Circuits Computer architecture Data processing Ferroelectricity gate‐tunable devices Heterojunctions Materials science memristors Nanomaterials Neural networks non‐volatile memory Switches Transistors Tunnel junctions van der Waals materials |
title | Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20and%20Challenges%20for%20Memtransistors%20in%20Neuromorphic%20Circuits%20and%20Systems&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yan,%20Xiaodong&rft.date=2022-12-01&rft.volume=34&rft.issue=48&rft.spage=e2108025&rft.epage=n/a&rft.pages=e2108025-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202108025&rft_dat=%3Cproquest_osti_%3E2742938627%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742938627&rft_id=info:pmid/34813677&rfr_iscdi=true |