Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems

Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-12, Vol.34 (48), p.e2108025-n/a
Hauptverfasser: Yan, Xiaodong, Qian, Justin H., Sangwan, Vinod K., Hersam, Mark C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e2108025
container_title Advanced materials (Weinheim)
container_volume 34
creator Yan, Xiaodong
Qian, Justin H.
Sangwan, Vinod K.
Hersam, Mark C.
description Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi‐terminal device concepts are required for more sophisticated bio‐realistic functions. Of particular interest are memtransistors based on low‐dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi‐terminal NVM devices including dual‐gated floating‐gate memories, dual‐gated ferroelectric transistors, and dual‐gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase‐changes properties of nanomaterials. Finally, strategies for achieving wafer‐scale integration of memtransistors and multi‐terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits. Recent progress and ongoing challenges for memtransistors are reviewed in the context of neuromorphic computing in solid‐state circuits and systems. Gate‐tunable learning and bio‐realistic functions in multi‐terminal synaptic devices are compared for memtransistors and related floating gate and ferroelectric memories, suggesting opportunities for new architectures that are suitable as hardware accelerators for artificial intelligence algorithms.
doi_str_mv 10.1002/adma.202108025
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1846496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742938627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4005-49927ee1877bad214b3cc6bd93aec92f3f39ba056187ec870e9176076128754e3</originalsourceid><addsrcrecordid>eNqFkEtP4zAURi3ECMpjyxJFzDqd60fseFmVmQGJl8TM2nKcG2rUxMVOhPrvSRUeS1Z3c76jq0PIGYU5BWC_bN3aOQNGoQRW7JEZLRjNBehin8xA8yLXUpSH5CilZwDQEuQBOeSipFwqNSP3DzE8RUwps12dLVd2vcbuCVPWhJjdYttH2yWf-hBT5rvsDocY2hA3K--ypY9u8P00fdymHtt0Qn40dp3w9P0ek_9_fv9bXuU393-vl4ub3AmAIhdaM4VIS6UqWzMqKu6crGrNLTrNGt5wXVko5EigKxWgpkqCkpSVqhDIj8nF5A2p9yY536NbudB16HpDSyGFliP0c4I2MbwMmHrzHIbYjX8ZpgTTvJRMjdR8olwMKUVszCb61satoWB2kc0usvmMPA7O37VD1WL9iX9UHQE9Aa9-jdtvdGZxebv4kr8BoLeHhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742938627</pqid></control><display><type>article</type><title>Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems</title><source>Wiley Online Library All Journals</source><creator>Yan, Xiaodong ; Qian, Justin H. ; Sangwan, Vinod K. ; Hersam, Mark C.</creator><creatorcontrib>Yan, Xiaodong ; Qian, Justin H. ; Sangwan, Vinod K. ; Hersam, Mark C.</creatorcontrib><description>Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi‐terminal device concepts are required for more sophisticated bio‐realistic functions. Of particular interest are memtransistors based on low‐dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi‐terminal NVM devices including dual‐gated floating‐gate memories, dual‐gated ferroelectric transistors, and dual‐gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase‐changes properties of nanomaterials. Finally, strategies for achieving wafer‐scale integration of memtransistors and multi‐terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits. Recent progress and ongoing challenges for memtransistors are reviewed in the context of neuromorphic computing in solid‐state circuits and systems. Gate‐tunable learning and bio‐realistic functions in multi‐terminal synaptic devices are compared for memtransistors and related floating gate and ferroelectric memories, suggesting opportunities for new architectures that are suitable as hardware accelerators for artificial intelligence algorithms.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202108025</identifier><identifier>PMID: 34813677</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Artificial intelligence ; Circuits ; Computer architecture ; Data processing ; Ferroelectricity ; gate‐tunable devices ; Heterojunctions ; Materials science ; memristors ; Nanomaterials ; Neural networks ; non‐volatile memory ; Switches ; Transistors ; Tunnel junctions ; van der Waals materials</subject><ispartof>Advanced materials (Weinheim), 2022-12, Vol.34 (48), p.e2108025-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4005-49927ee1877bad214b3cc6bd93aec92f3f39ba056187ec870e9176076128754e3</citedby><cites>FETCH-LOGICAL-c4005-49927ee1877bad214b3cc6bd93aec92f3f39ba056187ec870e9176076128754e3</cites><orcidid>0000-0002-5623-5285 ; 0000-0002-7737-6984 ; 0000-0003-4120-1426 ; 0000000277376984 ; 0000000341201426 ; 0000000256235285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202108025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202108025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34813677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1846496$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Xiaodong</creatorcontrib><creatorcontrib>Qian, Justin H.</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><title>Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi‐terminal device concepts are required for more sophisticated bio‐realistic functions. Of particular interest are memtransistors based on low‐dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi‐terminal NVM devices including dual‐gated floating‐gate memories, dual‐gated ferroelectric transistors, and dual‐gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase‐changes properties of nanomaterials. Finally, strategies for achieving wafer‐scale integration of memtransistors and multi‐terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits. Recent progress and ongoing challenges for memtransistors are reviewed in the context of neuromorphic computing in solid‐state circuits and systems. Gate‐tunable learning and bio‐realistic functions in multi‐terminal synaptic devices are compared for memtransistors and related floating gate and ferroelectric memories, suggesting opportunities for new architectures that are suitable as hardware accelerators for artificial intelligence algorithms.</description><subject>Artificial intelligence</subject><subject>Circuits</subject><subject>Computer architecture</subject><subject>Data processing</subject><subject>Ferroelectricity</subject><subject>gate‐tunable devices</subject><subject>Heterojunctions</subject><subject>Materials science</subject><subject>memristors</subject><subject>Nanomaterials</subject><subject>Neural networks</subject><subject>non‐volatile memory</subject><subject>Switches</subject><subject>Transistors</subject><subject>Tunnel junctions</subject><subject>van der Waals materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP4zAURi3ECMpjyxJFzDqd60fseFmVmQGJl8TM2nKcG2rUxMVOhPrvSRUeS1Z3c76jq0PIGYU5BWC_bN3aOQNGoQRW7JEZLRjNBehin8xA8yLXUpSH5CilZwDQEuQBOeSipFwqNSP3DzE8RUwps12dLVd2vcbuCVPWhJjdYttH2yWf-hBT5rvsDocY2hA3K--ypY9u8P00fdymHtt0Qn40dp3w9P0ek_9_fv9bXuU393-vl4ub3AmAIhdaM4VIS6UqWzMqKu6crGrNLTrNGt5wXVko5EigKxWgpkqCkpSVqhDIj8nF5A2p9yY536NbudB16HpDSyGFliP0c4I2MbwMmHrzHIbYjX8ZpgTTvJRMjdR8olwMKUVszCb61satoWB2kc0usvmMPA7O37VD1WL9iX9UHQE9Aa9-jdtvdGZxebv4kr8BoLeHhQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Yan, Xiaodong</creator><creator>Qian, Justin H.</creator><creator>Sangwan, Vinod K.</creator><creator>Hersam, Mark C.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5623-5285</orcidid><orcidid>https://orcid.org/0000-0002-7737-6984</orcidid><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000000277376984</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid><orcidid>https://orcid.org/0000000256235285</orcidid></search><sort><creationdate>20221201</creationdate><title>Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems</title><author>Yan, Xiaodong ; Qian, Justin H. ; Sangwan, Vinod K. ; Hersam, Mark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4005-49927ee1877bad214b3cc6bd93aec92f3f39ba056187ec870e9176076128754e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Circuits</topic><topic>Computer architecture</topic><topic>Data processing</topic><topic>Ferroelectricity</topic><topic>gate‐tunable devices</topic><topic>Heterojunctions</topic><topic>Materials science</topic><topic>memristors</topic><topic>Nanomaterials</topic><topic>Neural networks</topic><topic>non‐volatile memory</topic><topic>Switches</topic><topic>Transistors</topic><topic>Tunnel junctions</topic><topic>van der Waals materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiaodong</creatorcontrib><creatorcontrib>Qian, Justin H.</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiaodong</au><au>Qian, Justin H.</au><au>Sangwan, Vinod K.</au><au>Hersam, Mark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>34</volume><issue>48</issue><spage>e2108025</spage><epage>n/a</epage><pages>e2108025-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi‐terminal device concepts are required for more sophisticated bio‐realistic functions. Of particular interest are memtransistors based on low‐dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi‐terminal NVM devices including dual‐gated floating‐gate memories, dual‐gated ferroelectric transistors, and dual‐gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase‐changes properties of nanomaterials. Finally, strategies for achieving wafer‐scale integration of memtransistors and multi‐terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits. Recent progress and ongoing challenges for memtransistors are reviewed in the context of neuromorphic computing in solid‐state circuits and systems. Gate‐tunable learning and bio‐realistic functions in multi‐terminal synaptic devices are compared for memtransistors and related floating gate and ferroelectric memories, suggesting opportunities for new architectures that are suitable as hardware accelerators for artificial intelligence algorithms.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34813677</pmid><doi>10.1002/adma.202108025</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5623-5285</orcidid><orcidid>https://orcid.org/0000-0002-7737-6984</orcidid><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000000277376984</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid><orcidid>https://orcid.org/0000000256235285</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-12, Vol.34 (48), p.e2108025-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1846496
source Wiley Online Library All Journals
subjects Artificial intelligence
Circuits
Computer architecture
Data processing
Ferroelectricity
gate‐tunable devices
Heterojunctions
Materials science
memristors
Nanomaterials
Neural networks
non‐volatile memory
Switches
Transistors
Tunnel junctions
van der Waals materials
title Progress and Challenges for Memtransistors in Neuromorphic Circuits and Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20and%20Challenges%20for%20Memtransistors%20in%20Neuromorphic%20Circuits%20and%20Systems&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yan,%20Xiaodong&rft.date=2022-12-01&rft.volume=34&rft.issue=48&rft.spage=e2108025&rft.epage=n/a&rft.pages=e2108025-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202108025&rft_dat=%3Cproquest_osti_%3E2742938627%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742938627&rft_id=info:pmid/34813677&rfr_iscdi=true