From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers
Quantitative predictions of natural and induced phenomena in fractured rock is one of the great challenges in the Earth and Energy Sciences with far‐reaching economic and environmental impacts. Fractures occupy a very small volume of a subsurface formation but often dominate fluid flow, solute trans...
Gespeichert in:
Veröffentlicht in: | Reviews of geophysics (1985) 2022-03, Vol.60 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Reviews of geophysics (1985) |
container_volume | 60 |
creator | Viswanathan, H. S. Ajo‐Franklin, J. Birkholzer, J. T. Carey, J. W. Guglielmi, Y. Hyman, J. D. Karra, S. Pyrak‐Nolte, L. J. Rajaram, H. Srinivasan, G. Tartakovsky, D. M. |
description | Quantitative predictions of natural and induced phenomena in fractured rock is one of the great challenges in the Earth and Energy Sciences with far‐reaching economic and environmental impacts. Fractures occupy a very small volume of a subsurface formation but often dominate fluid flow, solute transport and mechanical deformation behavior. They play a central role in CO2 sequestration, nuclear waste disposal, hydrogen storage, geothermal energy production, nuclear nonproliferation, and hydrocarbon extraction. These applications require predictions of fracture‐dependent quantities of interest such as CO2 leakage rate, hydrocarbon production, radionuclide plume migration, and seismicity; to be useful, these predictions must account for uncertainty inherent in subsurface systems. Here, we review recent advances in fractured rock research covering field‐ and laboratory‐scale experimentation, numerical simulations, and uncertainty quantification. We discuss how these have greatly improved the fundamental understanding of fractures and one's ability to predict flow and transport in fractured systems. Dedicated field sites provide quantitative measurements of fracture flow that can be used to identify dominant coupled processes and to validate models. Laboratory‐scale experiments fill critical knowledge gaps by providing direct observations and measurements of fracture geometry and flow under controlled conditions that cannot be obtained in the field. Physics‐based simulation of flow and transport provide a bridge in understanding between controlled simple laboratory experiments and the massively complex field‐scale fracture systems. Finally, we review the use of machine learning‐based emulators to rapidly investigate different fracture property scenarios and accelerate physics‐based models by orders of magnitude to enable uncertainty quantification and near real‐time analysis.
Plain Language Summary
Some of the greatest challenges currently facing humanity have roots in the Earth and Energy Sciences. Policymakers rely on scientific research to answer questions related to the transition to green renewable energy, mitigate the climate crisis, and ensure global stability with reliable energy and water resources. A common thread in addressing these societal issues with far‐reaching economic and environmental impacts is the prediction of flow and transport in subsurface systems in the Earth, particularly in fractured rock. The need to predict, optimize and ultimately |
doi_str_mv | 10.1029/2021RG000744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1846225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2644421425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3714-a2ddb33b5918b2c8aee62aa8b5780c4adbab53e34a2019a4cd7116346cabe65d3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqzR8Q9OpqPvfDWyluFYqVRQ-eQjaZ4tY2qcmupf_e1fXgycsMMzwMw4vQOSXXlLDihhFGqxkhJBPiAI1oIURSMJIfolGeSZlQRopjdBLjihAqZCpH6LUMfoPLddfYvvodbj2e-m67BoufgjcQI0TcOFwGbdou9OvKm_dbXIEB1-KJ_dSuV1g7ix9h1zvv2gZCPEVHS72OcPbbx-ilvHue3ifzxexhOpknhmdUJJpZW3Ney4LmNTO5BkiZ1nkts5wYoW2ta8mBC80ILbQwNqM05SI1uoZUWj5GF8NdH9tGRdO0YN6Mdw5Mq2guUsZkjy4HtA3-o4PYqpXvguv_UiwVQjAqftTVoEzwMQZYqm1oNjrsFSXqO2H1N-Ges4HvmjXs_7WqWsz6ORP8CxJ4evs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644421425</pqid></control><display><type>article</type><title>From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Viswanathan, H. S. ; Ajo‐Franklin, J. ; Birkholzer, J. T. ; Carey, J. W. ; Guglielmi, Y. ; Hyman, J. D. ; Karra, S. ; Pyrak‐Nolte, L. J. ; Rajaram, H. ; Srinivasan, G. ; Tartakovsky, D. M.</creator><creatorcontrib>Viswanathan, H. S. ; Ajo‐Franklin, J. ; Birkholzer, J. T. ; Carey, J. W. ; Guglielmi, Y. ; Hyman, J. D. ; Karra, S. ; Pyrak‐Nolte, L. J. ; Rajaram, H. ; Srinivasan, G. ; Tartakovsky, D. M. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Purdue Univ., West Lafayette, IN (United States) ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Quantitative predictions of natural and induced phenomena in fractured rock is one of the great challenges in the Earth and Energy Sciences with far‐reaching economic and environmental impacts. Fractures occupy a very small volume of a subsurface formation but often dominate fluid flow, solute transport and mechanical deformation behavior. They play a central role in CO2 sequestration, nuclear waste disposal, hydrogen storage, geothermal energy production, nuclear nonproliferation, and hydrocarbon extraction. These applications require predictions of fracture‐dependent quantities of interest such as CO2 leakage rate, hydrocarbon production, radionuclide plume migration, and seismicity; to be useful, these predictions must account for uncertainty inherent in subsurface systems. Here, we review recent advances in fractured rock research covering field‐ and laboratory‐scale experimentation, numerical simulations, and uncertainty quantification. We discuss how these have greatly improved the fundamental understanding of fractures and one's ability to predict flow and transport in fractured systems. Dedicated field sites provide quantitative measurements of fracture flow that can be used to identify dominant coupled processes and to validate models. Laboratory‐scale experiments fill critical knowledge gaps by providing direct observations and measurements of fracture geometry and flow under controlled conditions that cannot be obtained in the field. Physics‐based simulation of flow and transport provide a bridge in understanding between controlled simple laboratory experiments and the massively complex field‐scale fracture systems. Finally, we review the use of machine learning‐based emulators to rapidly investigate different fracture property scenarios and accelerate physics‐based models by orders of magnitude to enable uncertainty quantification and near real‐time analysis.
Plain Language Summary
Some of the greatest challenges currently facing humanity have roots in the Earth and Energy Sciences. Policymakers rely on scientific research to answer questions related to the transition to green renewable energy, mitigate the climate crisis, and ensure global stability with reliable energy and water resources. A common thread in addressing these societal issues with far‐reaching economic and environmental impacts is the prediction of flow and transport in subsurface systems in the Earth, particularly in fractured rock. The need to predict, optimize and ultimately control fractured subsurface systems is an increasingly important topic, with 80% of the US energy resources and 50% of its drinking water supply coming from the subsurface. In this review, we describe the state‐of‐the‐art research on flow and transport in fracture systems and the path forward for the integration of field observations, laboratory experiments, predictive modeling, and uncertainty quantification to enable more efficient and environmentally prudent usage of critical subsurface resources.
Key Points
Understanding and predicting fractured systems requires integrating field and lab experiments, simulation and uncertainty quantification
Densely monitored field sites and in situ lab experiments provide quantitative measures of flow and transport that can constrain models
Physics‐based models with machine‐learning emulators enable uncertainty quantification of flow and transport in complex fracture networks</description><identifier>ISSN: 8755-1209</identifier><identifier>EISSN: 1944-9208</identifier><identifier>DOI: 10.1029/2021RG000744</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Bridges ; Carbon dioxide ; Carbon dioxide fixation ; Carbon sequestration ; Clean energy ; climate and environment ; Controlled conditions ; coupled processes ; Deformation ; Drinking water ; Earth ; Earth Sciences ; Economics ; Emulators ; Energy ; Energy resources ; Energy sources ; Energy storage ; Environmental impact ; Environmental management ; Experimentation ; Experiments ; flow ; Fluid dynamics ; Fluid flow ; Fractures ; fractures, subsurface flow and transport, coupled processes ; GEOSCIENCES ; Geothermal energy ; Hydrocarbons ; Hydrogen ; Hydrogen storage ; Laboratories ; Laboratory experiments ; Learning behaviour ; Machine learning ; Mathematical models ; Mechanical properties ; Numerical simulations ; Physics ; Prediction models ; Predictions ; Radioactive waste disposal ; Radioactive wastes ; Radioisotopes ; Renewable energy ; Renewable resources ; Resource management ; Reviews ; Rocks ; Scientific research ; Seismicity ; Solute transport ; Solutes ; subsurface flow and transport ; Transport ; transport and coupled processes in fractured systems ; Uncertainty ; uncertainty quantification ; Waste disposal ; Water resources ; Water supply</subject><ispartof>Reviews of geophysics (1985), 2022-03, Vol.60 (1), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3714-a2ddb33b5918b2c8aee62aa8b5780c4adbab53e34a2019a4cd7116346cabe65d3</citedby><cites>FETCH-LOGICAL-c3714-a2ddb33b5918b2c8aee62aa8b5780c4adbab53e34a2019a4cd7116346cabe65d3</cites><orcidid>0000-0002-7989-1912 ; 0000-0001-8488-2925 ; 0000-0001-6826-5214 ; 0000-0002-1178-9647 ; 0000-0003-2040-358X ; 0000-0002-6666-4702 ; 0000-0001-9019-8935 ; 0000-0001-7847-6293 ; 0000-0002-4224-2847 ; 0000-0001-5784-0295 ; 0000-0001-9581-7475 ; 0000000168265214 ; 0000000195817475 ; 0000000242242847 ; 0000000279891912 ; 000000032040358X ; 0000000190198935 ; 0000000266664702 ; 0000000178476293 ; 0000000211789647 ; 0000000184882925 ; 0000000157840295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021RG000744$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021RG000744$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1846225$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Viswanathan, H. S.</creatorcontrib><creatorcontrib>Ajo‐Franklin, J.</creatorcontrib><creatorcontrib>Birkholzer, J. T.</creatorcontrib><creatorcontrib>Carey, J. W.</creatorcontrib><creatorcontrib>Guglielmi, Y.</creatorcontrib><creatorcontrib>Hyman, J. D.</creatorcontrib><creatorcontrib>Karra, S.</creatorcontrib><creatorcontrib>Pyrak‐Nolte, L. J.</creatorcontrib><creatorcontrib>Rajaram, H.</creatorcontrib><creatorcontrib>Srinivasan, G.</creatorcontrib><creatorcontrib>Tartakovsky, D. M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Purdue Univ., West Lafayette, IN (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers</title><title>Reviews of geophysics (1985)</title><description>Quantitative predictions of natural and induced phenomena in fractured rock is one of the great challenges in the Earth and Energy Sciences with far‐reaching economic and environmental impacts. Fractures occupy a very small volume of a subsurface formation but often dominate fluid flow, solute transport and mechanical deformation behavior. They play a central role in CO2 sequestration, nuclear waste disposal, hydrogen storage, geothermal energy production, nuclear nonproliferation, and hydrocarbon extraction. These applications require predictions of fracture‐dependent quantities of interest such as CO2 leakage rate, hydrocarbon production, radionuclide plume migration, and seismicity; to be useful, these predictions must account for uncertainty inherent in subsurface systems. Here, we review recent advances in fractured rock research covering field‐ and laboratory‐scale experimentation, numerical simulations, and uncertainty quantification. We discuss how these have greatly improved the fundamental understanding of fractures and one's ability to predict flow and transport in fractured systems. Dedicated field sites provide quantitative measurements of fracture flow that can be used to identify dominant coupled processes and to validate models. Laboratory‐scale experiments fill critical knowledge gaps by providing direct observations and measurements of fracture geometry and flow under controlled conditions that cannot be obtained in the field. Physics‐based simulation of flow and transport provide a bridge in understanding between controlled simple laboratory experiments and the massively complex field‐scale fracture systems. Finally, we review the use of machine learning‐based emulators to rapidly investigate different fracture property scenarios and accelerate physics‐based models by orders of magnitude to enable uncertainty quantification and near real‐time analysis.
Plain Language Summary
Some of the greatest challenges currently facing humanity have roots in the Earth and Energy Sciences. Policymakers rely on scientific research to answer questions related to the transition to green renewable energy, mitigate the climate crisis, and ensure global stability with reliable energy and water resources. A common thread in addressing these societal issues with far‐reaching economic and environmental impacts is the prediction of flow and transport in subsurface systems in the Earth, particularly in fractured rock. The need to predict, optimize and ultimately control fractured subsurface systems is an increasingly important topic, with 80% of the US energy resources and 50% of its drinking water supply coming from the subsurface. In this review, we describe the state‐of‐the‐art research on flow and transport in fracture systems and the path forward for the integration of field observations, laboratory experiments, predictive modeling, and uncertainty quantification to enable more efficient and environmentally prudent usage of critical subsurface resources.
Key Points
Understanding and predicting fractured systems requires integrating field and lab experiments, simulation and uncertainty quantification
Densely monitored field sites and in situ lab experiments provide quantitative measures of flow and transport that can constrain models
Physics‐based models with machine‐learning emulators enable uncertainty quantification of flow and transport in complex fracture networks</description><subject>Bridges</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Carbon sequestration</subject><subject>Clean energy</subject><subject>climate and environment</subject><subject>Controlled conditions</subject><subject>coupled processes</subject><subject>Deformation</subject><subject>Drinking water</subject><subject>Earth</subject><subject>Earth Sciences</subject><subject>Economics</subject><subject>Emulators</subject><subject>Energy</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Environmental impact</subject><subject>Environmental management</subject><subject>Experimentation</subject><subject>Experiments</subject><subject>flow</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fractures</subject><subject>fractures, subsurface flow and transport, coupled processes</subject><subject>GEOSCIENCES</subject><subject>Geothermal energy</subject><subject>Hydrocarbons</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Laboratories</subject><subject>Laboratory experiments</subject><subject>Learning behaviour</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Numerical simulations</subject><subject>Physics</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Radioactive waste disposal</subject><subject>Radioactive wastes</subject><subject>Radioisotopes</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Resource management</subject><subject>Reviews</subject><subject>Rocks</subject><subject>Scientific research</subject><subject>Seismicity</subject><subject>Solute transport</subject><subject>Solutes</subject><subject>subsurface flow and transport</subject><subject>Transport</subject><subject>transport and coupled processes in fractured systems</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><subject>Waste disposal</subject><subject>Water resources</subject><subject>Water supply</subject><issn>8755-1209</issn><issn>1944-9208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90E1LAzEQBuAgCtbqzR8Q9OpqPvfDWyluFYqVRQ-eQjaZ4tY2qcmupf_e1fXgycsMMzwMw4vQOSXXlLDihhFGqxkhJBPiAI1oIURSMJIfolGeSZlQRopjdBLjihAqZCpH6LUMfoPLddfYvvodbj2e-m67BoufgjcQI0TcOFwGbdou9OvKm_dbXIEB1-KJ_dSuV1g7ix9h1zvv2gZCPEVHS72OcPbbx-ilvHue3ifzxexhOpknhmdUJJpZW3Ney4LmNTO5BkiZ1nkts5wYoW2ta8mBC80ILbQwNqM05SI1uoZUWj5GF8NdH9tGRdO0YN6Mdw5Mq2guUsZkjy4HtA3-o4PYqpXvguv_UiwVQjAqftTVoEzwMQZYqm1oNjrsFSXqO2H1N-Ges4HvmjXs_7WqWsz6ORP8CxJ4evs</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Viswanathan, H. S.</creator><creator>Ajo‐Franklin, J.</creator><creator>Birkholzer, J. T.</creator><creator>Carey, J. W.</creator><creator>Guglielmi, Y.</creator><creator>Hyman, J. D.</creator><creator>Karra, S.</creator><creator>Pyrak‐Nolte, L. J.</creator><creator>Rajaram, H.</creator><creator>Srinivasan, G.</creator><creator>Tartakovsky, D. M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7989-1912</orcidid><orcidid>https://orcid.org/0000-0001-8488-2925</orcidid><orcidid>https://orcid.org/0000-0001-6826-5214</orcidid><orcidid>https://orcid.org/0000-0002-1178-9647</orcidid><orcidid>https://orcid.org/0000-0003-2040-358X</orcidid><orcidid>https://orcid.org/0000-0002-6666-4702</orcidid><orcidid>https://orcid.org/0000-0001-9019-8935</orcidid><orcidid>https://orcid.org/0000-0001-7847-6293</orcidid><orcidid>https://orcid.org/0000-0002-4224-2847</orcidid><orcidid>https://orcid.org/0000-0001-5784-0295</orcidid><orcidid>https://orcid.org/0000-0001-9581-7475</orcidid><orcidid>https://orcid.org/0000000168265214</orcidid><orcidid>https://orcid.org/0000000195817475</orcidid><orcidid>https://orcid.org/0000000242242847</orcidid><orcidid>https://orcid.org/0000000279891912</orcidid><orcidid>https://orcid.org/000000032040358X</orcidid><orcidid>https://orcid.org/0000000190198935</orcidid><orcidid>https://orcid.org/0000000266664702</orcidid><orcidid>https://orcid.org/0000000178476293</orcidid><orcidid>https://orcid.org/0000000211789647</orcidid><orcidid>https://orcid.org/0000000184882925</orcidid><orcidid>https://orcid.org/0000000157840295</orcidid></search><sort><creationdate>202203</creationdate><title>From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers</title><author>Viswanathan, H. S. ; Ajo‐Franklin, J. ; Birkholzer, J. T. ; Carey, J. W. ; Guglielmi, Y. ; Hyman, J. D. ; Karra, S. ; Pyrak‐Nolte, L. J. ; Rajaram, H. ; Srinivasan, G. ; Tartakovsky, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3714-a2ddb33b5918b2c8aee62aa8b5780c4adbab53e34a2019a4cd7116346cabe65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bridges</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Carbon sequestration</topic><topic>Clean energy</topic><topic>climate and environment</topic><topic>Controlled conditions</topic><topic>coupled processes</topic><topic>Deformation</topic><topic>Drinking water</topic><topic>Earth</topic><topic>Earth Sciences</topic><topic>Economics</topic><topic>Emulators</topic><topic>Energy</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Environmental impact</topic><topic>Environmental management</topic><topic>Experimentation</topic><topic>Experiments</topic><topic>flow</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fractures</topic><topic>fractures, subsurface flow and transport, coupled processes</topic><topic>GEOSCIENCES</topic><topic>Geothermal energy</topic><topic>Hydrocarbons</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Laboratories</topic><topic>Laboratory experiments</topic><topic>Learning behaviour</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Numerical simulations</topic><topic>Physics</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Radioactive waste disposal</topic><topic>Radioactive wastes</topic><topic>Radioisotopes</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Resource management</topic><topic>Reviews</topic><topic>Rocks</topic><topic>Scientific research</topic><topic>Seismicity</topic><topic>Solute transport</topic><topic>Solutes</topic><topic>subsurface flow and transport</topic><topic>Transport</topic><topic>transport and coupled processes in fractured systems</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><topic>Waste disposal</topic><topic>Water resources</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viswanathan, H. S.</creatorcontrib><creatorcontrib>Ajo‐Franklin, J.</creatorcontrib><creatorcontrib>Birkholzer, J. T.</creatorcontrib><creatorcontrib>Carey, J. W.</creatorcontrib><creatorcontrib>Guglielmi, Y.</creatorcontrib><creatorcontrib>Hyman, J. D.</creatorcontrib><creatorcontrib>Karra, S.</creatorcontrib><creatorcontrib>Pyrak‐Nolte, L. J.</creatorcontrib><creatorcontrib>Rajaram, H.</creatorcontrib><creatorcontrib>Srinivasan, G.</creatorcontrib><creatorcontrib>Tartakovsky, D. M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Purdue Univ., West Lafayette, IN (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Reviews of geophysics (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viswanathan, H. S.</au><au>Ajo‐Franklin, J.</au><au>Birkholzer, J. T.</au><au>Carey, J. W.</au><au>Guglielmi, Y.</au><au>Hyman, J. D.</au><au>Karra, S.</au><au>Pyrak‐Nolte, L. J.</au><au>Rajaram, H.</au><au>Srinivasan, G.</au><au>Tartakovsky, D. M.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Purdue Univ., West Lafayette, IN (United States)</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers</atitle><jtitle>Reviews of geophysics (1985)</jtitle><date>2022-03</date><risdate>2022</risdate><volume>60</volume><issue>1</issue><epage>n/a</epage><issn>8755-1209</issn><eissn>1944-9208</eissn><abstract>Quantitative predictions of natural and induced phenomena in fractured rock is one of the great challenges in the Earth and Energy Sciences with far‐reaching economic and environmental impacts. Fractures occupy a very small volume of a subsurface formation but often dominate fluid flow, solute transport and mechanical deformation behavior. They play a central role in CO2 sequestration, nuclear waste disposal, hydrogen storage, geothermal energy production, nuclear nonproliferation, and hydrocarbon extraction. These applications require predictions of fracture‐dependent quantities of interest such as CO2 leakage rate, hydrocarbon production, radionuclide plume migration, and seismicity; to be useful, these predictions must account for uncertainty inherent in subsurface systems. Here, we review recent advances in fractured rock research covering field‐ and laboratory‐scale experimentation, numerical simulations, and uncertainty quantification. We discuss how these have greatly improved the fundamental understanding of fractures and one's ability to predict flow and transport in fractured systems. Dedicated field sites provide quantitative measurements of fracture flow that can be used to identify dominant coupled processes and to validate models. Laboratory‐scale experiments fill critical knowledge gaps by providing direct observations and measurements of fracture geometry and flow under controlled conditions that cannot be obtained in the field. Physics‐based simulation of flow and transport provide a bridge in understanding between controlled simple laboratory experiments and the massively complex field‐scale fracture systems. Finally, we review the use of machine learning‐based emulators to rapidly investigate different fracture property scenarios and accelerate physics‐based models by orders of magnitude to enable uncertainty quantification and near real‐time analysis.
Plain Language Summary
Some of the greatest challenges currently facing humanity have roots in the Earth and Energy Sciences. Policymakers rely on scientific research to answer questions related to the transition to green renewable energy, mitigate the climate crisis, and ensure global stability with reliable energy and water resources. A common thread in addressing these societal issues with far‐reaching economic and environmental impacts is the prediction of flow and transport in subsurface systems in the Earth, particularly in fractured rock. The need to predict, optimize and ultimately control fractured subsurface systems is an increasingly important topic, with 80% of the US energy resources and 50% of its drinking water supply coming from the subsurface. In this review, we describe the state‐of‐the‐art research on flow and transport in fracture systems and the path forward for the integration of field observations, laboratory experiments, predictive modeling, and uncertainty quantification to enable more efficient and environmentally prudent usage of critical subsurface resources.
Key Points
Understanding and predicting fractured systems requires integrating field and lab experiments, simulation and uncertainty quantification
Densely monitored field sites and in situ lab experiments provide quantitative measures of flow and transport that can constrain models
Physics‐based models with machine‐learning emulators enable uncertainty quantification of flow and transport in complex fracture networks</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021RG000744</doi><tpages>65</tpages><orcidid>https://orcid.org/0000-0002-7989-1912</orcidid><orcidid>https://orcid.org/0000-0001-8488-2925</orcidid><orcidid>https://orcid.org/0000-0001-6826-5214</orcidid><orcidid>https://orcid.org/0000-0002-1178-9647</orcidid><orcidid>https://orcid.org/0000-0003-2040-358X</orcidid><orcidid>https://orcid.org/0000-0002-6666-4702</orcidid><orcidid>https://orcid.org/0000-0001-9019-8935</orcidid><orcidid>https://orcid.org/0000-0001-7847-6293</orcidid><orcidid>https://orcid.org/0000-0002-4224-2847</orcidid><orcidid>https://orcid.org/0000-0001-5784-0295</orcidid><orcidid>https://orcid.org/0000-0001-9581-7475</orcidid><orcidid>https://orcid.org/0000000168265214</orcidid><orcidid>https://orcid.org/0000000195817475</orcidid><orcidid>https://orcid.org/0000000242242847</orcidid><orcidid>https://orcid.org/0000000279891912</orcidid><orcidid>https://orcid.org/000000032040358X</orcidid><orcidid>https://orcid.org/0000000190198935</orcidid><orcidid>https://orcid.org/0000000266664702</orcidid><orcidid>https://orcid.org/0000000178476293</orcidid><orcidid>https://orcid.org/0000000211789647</orcidid><orcidid>https://orcid.org/0000000184882925</orcidid><orcidid>https://orcid.org/0000000157840295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8755-1209 |
ispartof | Reviews of geophysics (1985), 2022-03, Vol.60 (1), p.n/a |
issn | 8755-1209 1944-9208 |
language | eng |
recordid | cdi_osti_scitechconnect_1846225 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Bridges Carbon dioxide Carbon dioxide fixation Carbon sequestration Clean energy climate and environment Controlled conditions coupled processes Deformation Drinking water Earth Earth Sciences Economics Emulators Energy Energy resources Energy sources Energy storage Environmental impact Environmental management Experimentation Experiments flow Fluid dynamics Fluid flow Fractures fractures, subsurface flow and transport, coupled processes GEOSCIENCES Geothermal energy Hydrocarbons Hydrogen Hydrogen storage Laboratories Laboratory experiments Learning behaviour Machine learning Mathematical models Mechanical properties Numerical simulations Physics Prediction models Predictions Radioactive waste disposal Radioactive wastes Radioisotopes Renewable energy Renewable resources Resource management Reviews Rocks Scientific research Seismicity Solute transport Solutes subsurface flow and transport Transport transport and coupled processes in fractured systems Uncertainty uncertainty quantification Waste disposal Water resources Water supply |
title | From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Fluid%20Flow%20to%20Coupled%20Processes%20in%20Fractured%20Rock:%20Recent%20Advances%20and%20New%20Frontiers&rft.jtitle=Reviews%20of%20geophysics%20(1985)&rft.au=Viswanathan,%20H.%20S.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-03&rft.volume=60&rft.issue=1&rft.epage=n/a&rft.issn=8755-1209&rft.eissn=1944-9208&rft_id=info:doi/10.1029/2021RG000744&rft_dat=%3Cproquest_osti_%3E2644421425%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644421425&rft_id=info:pmid/&rfr_iscdi=true |