The passivity of lithium electrodes in liquid electrolytes for secondary batteries
Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid elect...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Materials 2021-11, Vol.6 (11), p.1036-1052 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1052 |
---|---|
container_issue | 11 |
container_start_page | 1036 |
container_title | Nature reviews. Materials |
container_volume | 6 |
creator | He, Xin Bresser, Dominic Passerini, Stefano Baakes, Florian Krewer, Ulrike Lopez, Jeffrey Mallia, Christopher Thomas Shao-Horn, Yang Cekic-Laskovic, Isidora Wiemers-Meyer, Simon Soto, Fernando A. Ponce, Victor Seminario, Jorge M. Balbuena, Perla B. Jia, Hao Xu, Wu Xu, Yaobin Wang, Chongmin Horstmann, Birger Amine, Rachid Su, Chi-Cheung Shi, Jiayan Amine, Khalil Winter, Martin Latz, Arnulf Kostecki, Robert |
description | Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid electrolyte interphase) determines ionic diffusion and the structural and morphological evolution of the Li metal electrode upon cycling. In this Review, we discuss spontaneous and operation-induced reactions at the Li metal–electrolyte interface from a corrosion science perspective. We highlight that the instantaneous formation of a thin protective film of corrosion products at the Li surface, which acts as a barrier to further chemical reactions with the electrolyte, precedes film reformation, which occurs during subsequent electrochemical stripping and plating of Li during battery operation. Finally, we discuss solutions to overcoming remaining challenges of Li metal batteries related to Li surface science, electrolyte chemistry, cell engineering and the intrinsic instability of the Li metal–electrolyte interface.
Rechargeable Li metal batteries are currently limited by electrolyte decomposition and rapid Li consumption. Li plating and stripping greatly depend on the solid electrolyte interphase formed at the Li metal–liquid electrolyte interface. This Review discusses the reactions occurring at this interface from a corrosion science perspective, highlighting the requirements for an ideal passivation layer. |
doi_str_mv | 10.1038/s41578-021-00345-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1845339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591866900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-18f84aac9e2ce06e6ffc4b883a900a6d671938a06bff08f97533357fd7a4d72e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwNOi59XJJtnNHqX4DwqC1HNIsxObst20SSr02xtdRU-eJjx-b-blEXJB4ZoCkzeRU9HIEipaAjAuSnFEJhUIWUrOmuM_71MyjXENALRlvJXVhLwsVlhsdYzu3aVD4W3Ru7Ry-02BPZoUfIexcENWd3vX_Yj9IWXZ-lBENH7odDgUS50SBofxnJxY3Uecfs8z8np_t5g9lvPnh6fZ7bw0rIVUUmkl19q0WBmEGmtrDV9KyXQLoOuubnJIqaFeWgvSto1gjInGdo3mXVMhOyOX414fk1PRuIRmldMMOaKikme-zdDVCG2D3-0xJrX2-zDkXKoSLZV1na9lqhopE3yMAa3aBrfJv1IU1GfHauxY5Y7VV8dKZBMbTTHDwxuG39X_uD4AVOx_QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591866900</pqid></control><display><type>article</type><title>The passivity of lithium electrodes in liquid electrolytes for secondary batteries</title><source>Springer Nature - Complete Springer Journals</source><creator>He, Xin ; Bresser, Dominic ; Passerini, Stefano ; Baakes, Florian ; Krewer, Ulrike ; Lopez, Jeffrey ; Mallia, Christopher Thomas ; Shao-Horn, Yang ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Soto, Fernando A. ; Ponce, Victor ; Seminario, Jorge M. ; Balbuena, Perla B. ; Jia, Hao ; Xu, Wu ; Xu, Yaobin ; Wang, Chongmin ; Horstmann, Birger ; Amine, Rachid ; Su, Chi-Cheung ; Shi, Jiayan ; Amine, Khalil ; Winter, Martin ; Latz, Arnulf ; Kostecki, Robert</creator><creatorcontrib>He, Xin ; Bresser, Dominic ; Passerini, Stefano ; Baakes, Florian ; Krewer, Ulrike ; Lopez, Jeffrey ; Mallia, Christopher Thomas ; Shao-Horn, Yang ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Soto, Fernando A. ; Ponce, Victor ; Seminario, Jorge M. ; Balbuena, Perla B. ; Jia, Hao ; Xu, Wu ; Xu, Yaobin ; Wang, Chongmin ; Horstmann, Birger ; Amine, Rachid ; Su, Chi-Cheung ; Shi, Jiayan ; Amine, Khalil ; Winter, Martin ; Latz, Arnulf ; Kostecki, Robert ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid electrolyte interphase) determines ionic diffusion and the structural and morphological evolution of the Li metal electrode upon cycling. In this Review, we discuss spontaneous and operation-induced reactions at the Li metal–electrolyte interface from a corrosion science perspective. We highlight that the instantaneous formation of a thin protective film of corrosion products at the Li surface, which acts as a barrier to further chemical reactions with the electrolyte, precedes film reformation, which occurs during subsequent electrochemical stripping and plating of Li during battery operation. Finally, we discuss solutions to overcoming remaining challenges of Li metal batteries related to Li surface science, electrolyte chemistry, cell engineering and the intrinsic instability of the Li metal–electrolyte interface.
Rechargeable Li metal batteries are currently limited by electrolyte decomposition and rapid Li consumption. Li plating and stripping greatly depend on the solid electrolyte interphase formed at the Li metal–liquid electrolyte interface. This Review discusses the reactions occurring at this interface from a corrosion science perspective, highlighting the requirements for an ideal passivation layer.</description><identifier>ISSN: 2058-8437</identifier><identifier>EISSN: 2058-8437</identifier><identifier>DOI: 10.1038/s41578-021-00345-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/4077/4079/891 ; 639/638/161/891 ; Batteries ; Biomaterials ; Chemical reactions ; Chemistry and Materials Science ; Condensed Matter Physics ; Consumption ; Corrosion ; Corrosion products ; Decomposition ; Electrolytes ; ENERGY STORAGE ; Interface stability ; Ion diffusion ; Lithium ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Passivity ; Plating ; Rechargeable batteries ; Review Article ; Solid electrolytes ; Storage batteries</subject><ispartof>Nature reviews. Materials, 2021-11, Vol.6 (11), p.1036-1052</ispartof><rights>Springer Nature Limited 2021</rights><rights>Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-18f84aac9e2ce06e6ffc4b883a900a6d671938a06bff08f97533357fd7a4d72e3</citedby><cites>FETCH-LOGICAL-c390t-18f84aac9e2ce06e6ffc4b883a900a6d671938a06bff08f97533357fd7a4d72e3</cites><orcidid>0000-0003-1449-8172 ; 0000-0002-6606-5304 ; 0000-0002-0692-8331 ; 0000-0001-6429-6048 ; 0000-0002-1500-0578 ; 0000-0002-6425-5550 ; 0000-0001-6876-0020 ; 0000-0002-5984-5935 ; 0000-0001-8714-2121 ; 0000-0001-8432-240X ; 0000-0001-9206-3719 ; 0000-0002-5312-3149 ; 0000-0002-2685-8684 ; 0000-0002-9945-3514 ; 0000-0002-0926-071X ; 0000-0003-3327-0958 ; 0000000264255550 ; 0000000314498172 ; 0000000226858684 ; 0000000164296048 ; 0000000299453514 ; 0000000215000578 ; 000000018432240X ; 0000000192063719 ; 000000020926071X ; 0000000253123149 ; 0000000266065304 ; 0000000187142121 ; 0000000259845935 ; 0000000333270958 ; 0000000206928331 ; 0000000168760020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41578-021-00345-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41578-021-00345-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1845339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Bresser, Dominic</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><creatorcontrib>Baakes, Florian</creatorcontrib><creatorcontrib>Krewer, Ulrike</creatorcontrib><creatorcontrib>Lopez, Jeffrey</creatorcontrib><creatorcontrib>Mallia, Christopher Thomas</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Cekic-Laskovic, Isidora</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Soto, Fernando A.</creatorcontrib><creatorcontrib>Ponce, Victor</creatorcontrib><creatorcontrib>Seminario, Jorge M.</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Jia, Hao</creatorcontrib><creatorcontrib>Xu, Wu</creatorcontrib><creatorcontrib>Xu, Yaobin</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Horstmann, Birger</creatorcontrib><creatorcontrib>Amine, Rachid</creatorcontrib><creatorcontrib>Su, Chi-Cheung</creatorcontrib><creatorcontrib>Shi, Jiayan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Latz, Arnulf</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>The passivity of lithium electrodes in liquid electrolytes for secondary batteries</title><title>Nature reviews. Materials</title><addtitle>Nat Rev Mater</addtitle><description>Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid electrolyte interphase) determines ionic diffusion and the structural and morphological evolution of the Li metal electrode upon cycling. In this Review, we discuss spontaneous and operation-induced reactions at the Li metal–electrolyte interface from a corrosion science perspective. We highlight that the instantaneous formation of a thin protective film of corrosion products at the Li surface, which acts as a barrier to further chemical reactions with the electrolyte, precedes film reformation, which occurs during subsequent electrochemical stripping and plating of Li during battery operation. Finally, we discuss solutions to overcoming remaining challenges of Li metal batteries related to Li surface science, electrolyte chemistry, cell engineering and the intrinsic instability of the Li metal–electrolyte interface.
Rechargeable Li metal batteries are currently limited by electrolyte decomposition and rapid Li consumption. Li plating and stripping greatly depend on the solid electrolyte interphase formed at the Li metal–liquid electrolyte interface. This Review discusses the reactions occurring at this interface from a corrosion science perspective, highlighting the requirements for an ideal passivation layer.</description><subject>639/301/299/891</subject><subject>639/4077/4079/891</subject><subject>639/638/161/891</subject><subject>Batteries</subject><subject>Biomaterials</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Consumption</subject><subject>Corrosion</subject><subject>Corrosion products</subject><subject>Decomposition</subject><subject>Electrolytes</subject><subject>ENERGY STORAGE</subject><subject>Interface stability</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Passivity</subject><subject>Plating</subject><subject>Rechargeable batteries</subject><subject>Review Article</subject><subject>Solid electrolytes</subject><subject>Storage batteries</subject><issn>2058-8437</issn><issn>2058-8437</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWLRfwNOi59XJJtnNHqX4DwqC1HNIsxObst20SSr02xtdRU-eJjx-b-blEXJB4ZoCkzeRU9HIEipaAjAuSnFEJhUIWUrOmuM_71MyjXENALRlvJXVhLwsVlhsdYzu3aVD4W3Ru7Ry-02BPZoUfIexcENWd3vX_Yj9IWXZ-lBENH7odDgUS50SBofxnJxY3Uecfs8z8np_t5g9lvPnh6fZ7bw0rIVUUmkl19q0WBmEGmtrDV9KyXQLoOuubnJIqaFeWgvSto1gjInGdo3mXVMhOyOX414fk1PRuIRmldMMOaKikme-zdDVCG2D3-0xJrX2-zDkXKoSLZV1na9lqhopE3yMAa3aBrfJv1IU1GfHauxY5Y7VV8dKZBMbTTHDwxuG39X_uD4AVOx_QQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>He, Xin</creator><creator>Bresser, Dominic</creator><creator>Passerini, Stefano</creator><creator>Baakes, Florian</creator><creator>Krewer, Ulrike</creator><creator>Lopez, Jeffrey</creator><creator>Mallia, Christopher Thomas</creator><creator>Shao-Horn, Yang</creator><creator>Cekic-Laskovic, Isidora</creator><creator>Wiemers-Meyer, Simon</creator><creator>Soto, Fernando A.</creator><creator>Ponce, Victor</creator><creator>Seminario, Jorge M.</creator><creator>Balbuena, Perla B.</creator><creator>Jia, Hao</creator><creator>Xu, Wu</creator><creator>Xu, Yaobin</creator><creator>Wang, Chongmin</creator><creator>Horstmann, Birger</creator><creator>Amine, Rachid</creator><creator>Su, Chi-Cheung</creator><creator>Shi, Jiayan</creator><creator>Amine, Khalil</creator><creator>Winter, Martin</creator><creator>Latz, Arnulf</creator><creator>Kostecki, Robert</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1449-8172</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><orcidid>https://orcid.org/0000-0002-0692-8331</orcidid><orcidid>https://orcid.org/0000-0001-6429-6048</orcidid><orcidid>https://orcid.org/0000-0002-1500-0578</orcidid><orcidid>https://orcid.org/0000-0002-6425-5550</orcidid><orcidid>https://orcid.org/0000-0001-6876-0020</orcidid><orcidid>https://orcid.org/0000-0002-5984-5935</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000-0001-8432-240X</orcidid><orcidid>https://orcid.org/0000-0001-9206-3719</orcidid><orcidid>https://orcid.org/0000-0002-5312-3149</orcidid><orcidid>https://orcid.org/0000-0002-2685-8684</orcidid><orcidid>https://orcid.org/0000-0002-9945-3514</orcidid><orcidid>https://orcid.org/0000-0002-0926-071X</orcidid><orcidid>https://orcid.org/0000-0003-3327-0958</orcidid><orcidid>https://orcid.org/0000000264255550</orcidid><orcidid>https://orcid.org/0000000314498172</orcidid><orcidid>https://orcid.org/0000000226858684</orcidid><orcidid>https://orcid.org/0000000164296048</orcidid><orcidid>https://orcid.org/0000000299453514</orcidid><orcidid>https://orcid.org/0000000215000578</orcidid><orcidid>https://orcid.org/000000018432240X</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/000000020926071X</orcidid><orcidid>https://orcid.org/0000000253123149</orcidid><orcidid>https://orcid.org/0000000266065304</orcidid><orcidid>https://orcid.org/0000000187142121</orcidid><orcidid>https://orcid.org/0000000259845935</orcidid><orcidid>https://orcid.org/0000000333270958</orcidid><orcidid>https://orcid.org/0000000206928331</orcidid><orcidid>https://orcid.org/0000000168760020</orcidid></search><sort><creationdate>20211101</creationdate><title>The passivity of lithium electrodes in liquid electrolytes for secondary batteries</title><author>He, Xin ; Bresser, Dominic ; Passerini, Stefano ; Baakes, Florian ; Krewer, Ulrike ; Lopez, Jeffrey ; Mallia, Christopher Thomas ; Shao-Horn, Yang ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Soto, Fernando A. ; Ponce, Victor ; Seminario, Jorge M. ; Balbuena, Perla B. ; Jia, Hao ; Xu, Wu ; Xu, Yaobin ; Wang, Chongmin ; Horstmann, Birger ; Amine, Rachid ; Su, Chi-Cheung ; Shi, Jiayan ; Amine, Khalil ; Winter, Martin ; Latz, Arnulf ; Kostecki, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-18f84aac9e2ce06e6ffc4b883a900a6d671938a06bff08f97533357fd7a4d72e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/299/891</topic><topic>639/4077/4079/891</topic><topic>639/638/161/891</topic><topic>Batteries</topic><topic>Biomaterials</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Consumption</topic><topic>Corrosion</topic><topic>Corrosion products</topic><topic>Decomposition</topic><topic>Electrolytes</topic><topic>ENERGY STORAGE</topic><topic>Interface stability</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Passivity</topic><topic>Plating</topic><topic>Rechargeable batteries</topic><topic>Review Article</topic><topic>Solid electrolytes</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Bresser, Dominic</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><creatorcontrib>Baakes, Florian</creatorcontrib><creatorcontrib>Krewer, Ulrike</creatorcontrib><creatorcontrib>Lopez, Jeffrey</creatorcontrib><creatorcontrib>Mallia, Christopher Thomas</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Cekic-Laskovic, Isidora</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Soto, Fernando A.</creatorcontrib><creatorcontrib>Ponce, Victor</creatorcontrib><creatorcontrib>Seminario, Jorge M.</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Jia, Hao</creatorcontrib><creatorcontrib>Xu, Wu</creatorcontrib><creatorcontrib>Xu, Yaobin</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Horstmann, Birger</creatorcontrib><creatorcontrib>Amine, Rachid</creatorcontrib><creatorcontrib>Su, Chi-Cheung</creatorcontrib><creatorcontrib>Shi, Jiayan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Latz, Arnulf</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature reviews. Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xin</au><au>Bresser, Dominic</au><au>Passerini, Stefano</au><au>Baakes, Florian</au><au>Krewer, Ulrike</au><au>Lopez, Jeffrey</au><au>Mallia, Christopher Thomas</au><au>Shao-Horn, Yang</au><au>Cekic-Laskovic, Isidora</au><au>Wiemers-Meyer, Simon</au><au>Soto, Fernando A.</au><au>Ponce, Victor</au><au>Seminario, Jorge M.</au><au>Balbuena, Perla B.</au><au>Jia, Hao</au><au>Xu, Wu</au><au>Xu, Yaobin</au><au>Wang, Chongmin</au><au>Horstmann, Birger</au><au>Amine, Rachid</au><au>Su, Chi-Cheung</au><au>Shi, Jiayan</au><au>Amine, Khalil</au><au>Winter, Martin</au><au>Latz, Arnulf</au><au>Kostecki, Robert</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The passivity of lithium electrodes in liquid electrolytes for secondary batteries</atitle><jtitle>Nature reviews. Materials</jtitle><stitle>Nat Rev Mater</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>6</volume><issue>11</issue><spage>1036</spage><epage>1052</epage><pages>1036-1052</pages><issn>2058-8437</issn><eissn>2058-8437</eissn><abstract>Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid electrolyte interphase) determines ionic diffusion and the structural and morphological evolution of the Li metal electrode upon cycling. In this Review, we discuss spontaneous and operation-induced reactions at the Li metal–electrolyte interface from a corrosion science perspective. We highlight that the instantaneous formation of a thin protective film of corrosion products at the Li surface, which acts as a barrier to further chemical reactions with the electrolyte, precedes film reformation, which occurs during subsequent electrochemical stripping and plating of Li during battery operation. Finally, we discuss solutions to overcoming remaining challenges of Li metal batteries related to Li surface science, electrolyte chemistry, cell engineering and the intrinsic instability of the Li metal–electrolyte interface.
Rechargeable Li metal batteries are currently limited by electrolyte decomposition and rapid Li consumption. Li plating and stripping greatly depend on the solid electrolyte interphase formed at the Li metal–liquid electrolyte interface. This Review discusses the reactions occurring at this interface from a corrosion science perspective, highlighting the requirements for an ideal passivation layer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41578-021-00345-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1449-8172</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><orcidid>https://orcid.org/0000-0002-0692-8331</orcidid><orcidid>https://orcid.org/0000-0001-6429-6048</orcidid><orcidid>https://orcid.org/0000-0002-1500-0578</orcidid><orcidid>https://orcid.org/0000-0002-6425-5550</orcidid><orcidid>https://orcid.org/0000-0001-6876-0020</orcidid><orcidid>https://orcid.org/0000-0002-5984-5935</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000-0001-8432-240X</orcidid><orcidid>https://orcid.org/0000-0001-9206-3719</orcidid><orcidid>https://orcid.org/0000-0002-5312-3149</orcidid><orcidid>https://orcid.org/0000-0002-2685-8684</orcidid><orcidid>https://orcid.org/0000-0002-9945-3514</orcidid><orcidid>https://orcid.org/0000-0002-0926-071X</orcidid><orcidid>https://orcid.org/0000-0003-3327-0958</orcidid><orcidid>https://orcid.org/0000000264255550</orcidid><orcidid>https://orcid.org/0000000314498172</orcidid><orcidid>https://orcid.org/0000000226858684</orcidid><orcidid>https://orcid.org/0000000164296048</orcidid><orcidid>https://orcid.org/0000000299453514</orcidid><orcidid>https://orcid.org/0000000215000578</orcidid><orcidid>https://orcid.org/000000018432240X</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/000000020926071X</orcidid><orcidid>https://orcid.org/0000000253123149</orcidid><orcidid>https://orcid.org/0000000266065304</orcidid><orcidid>https://orcid.org/0000000187142121</orcidid><orcidid>https://orcid.org/0000000259845935</orcidid><orcidid>https://orcid.org/0000000333270958</orcidid><orcidid>https://orcid.org/0000000206928331</orcidid><orcidid>https://orcid.org/0000000168760020</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-8437 |
ispartof | Nature reviews. Materials, 2021-11, Vol.6 (11), p.1036-1052 |
issn | 2058-8437 2058-8437 |
language | eng |
recordid | cdi_osti_scitechconnect_1845339 |
source | Springer Nature - Complete Springer Journals |
subjects | 639/301/299/891 639/4077/4079/891 639/638/161/891 Batteries Biomaterials Chemical reactions Chemistry and Materials Science Condensed Matter Physics Consumption Corrosion Corrosion products Decomposition Electrolytes ENERGY STORAGE Interface stability Ion diffusion Lithium Materials Science Nanotechnology Optical and Electronic Materials Passivity Plating Rechargeable batteries Review Article Solid electrolytes Storage batteries |
title | The passivity of lithium electrodes in liquid electrolytes for secondary batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20passivity%20of%20lithium%20electrodes%20in%20liquid%20electrolytes%20for%20secondary%20batteries&rft.jtitle=Nature%20reviews.%20Materials&rft.au=He,%20Xin&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-11-01&rft.volume=6&rft.issue=11&rft.spage=1036&rft.epage=1052&rft.pages=1036-1052&rft.issn=2058-8437&rft.eissn=2058-8437&rft_id=info:doi/10.1038/s41578-021-00345-5&rft_dat=%3Cproquest_osti_%3E2591866900%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591866900&rft_id=info:pmid/&rfr_iscdi=true |