The passivity of lithium electrodes in liquid electrolytes for secondary batteries

Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Materials 2021-11, Vol.6 (11), p.1036-1052
Hauptverfasser: He, Xin, Bresser, Dominic, Passerini, Stefano, Baakes, Florian, Krewer, Ulrike, Lopez, Jeffrey, Mallia, Christopher Thomas, Shao-Horn, Yang, Cekic-Laskovic, Isidora, Wiemers-Meyer, Simon, Soto, Fernando A., Ponce, Victor, Seminario, Jorge M., Balbuena, Perla B., Jia, Hao, Xu, Wu, Xu, Yaobin, Wang, Chongmin, Horstmann, Birger, Amine, Rachid, Su, Chi-Cheung, Shi, Jiayan, Amine, Khalil, Winter, Martin, Latz, Arnulf, Kostecki, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1052
container_issue 11
container_start_page 1036
container_title Nature reviews. Materials
container_volume 6
creator He, Xin
Bresser, Dominic
Passerini, Stefano
Baakes, Florian
Krewer, Ulrike
Lopez, Jeffrey
Mallia, Christopher Thomas
Shao-Horn, Yang
Cekic-Laskovic, Isidora
Wiemers-Meyer, Simon
Soto, Fernando A.
Ponce, Victor
Seminario, Jorge M.
Balbuena, Perla B.
Jia, Hao
Xu, Wu
Xu, Yaobin
Wang, Chongmin
Horstmann, Birger
Amine, Rachid
Su, Chi-Cheung
Shi, Jiayan
Amine, Khalil
Winter, Martin
Latz, Arnulf
Kostecki, Robert
description Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid electrolyte interphase) determines ionic diffusion and the structural and morphological evolution of the Li metal electrode upon cycling. In this Review, we discuss spontaneous and operation-induced reactions at the Li metal–electrolyte interface from a corrosion science perspective. We highlight that the instantaneous formation of a thin protective film of corrosion products at the Li surface, which acts as a barrier to further chemical reactions with the electrolyte, precedes film reformation, which occurs during subsequent electrochemical stripping and plating of Li during battery operation. Finally, we discuss solutions to overcoming remaining challenges of Li metal batteries related to Li surface science, electrolyte chemistry, cell engineering and the intrinsic instability of the Li metal–electrolyte interface. Rechargeable Li metal batteries are currently limited by electrolyte decomposition and rapid Li consumption. Li plating and stripping greatly depend on the solid electrolyte interphase formed at the Li metal–liquid electrolyte interface. This Review discusses the reactions occurring at this interface from a corrosion science perspective, highlighting the requirements for an ideal passivation layer.
doi_str_mv 10.1038/s41578-021-00345-5
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1845339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591866900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-18f84aac9e2ce06e6ffc4b883a900a6d671938a06bff08f97533357fd7a4d72e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwNOi59XJJtnNHqX4DwqC1HNIsxObst20SSr02xtdRU-eJjx-b-blEXJB4ZoCkzeRU9HIEipaAjAuSnFEJhUIWUrOmuM_71MyjXENALRlvJXVhLwsVlhsdYzu3aVD4W3Ru7Ry-02BPZoUfIexcENWd3vX_Yj9IWXZ-lBENH7odDgUS50SBofxnJxY3Uecfs8z8np_t5g9lvPnh6fZ7bw0rIVUUmkl19q0WBmEGmtrDV9KyXQLoOuubnJIqaFeWgvSto1gjInGdo3mXVMhOyOX414fk1PRuIRmldMMOaKikme-zdDVCG2D3-0xJrX2-zDkXKoSLZV1na9lqhopE3yMAa3aBrfJv1IU1GfHauxY5Y7VV8dKZBMbTTHDwxuG39X_uD4AVOx_QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591866900</pqid></control><display><type>article</type><title>The passivity of lithium electrodes in liquid electrolytes for secondary batteries</title><source>Springer Nature - Complete Springer Journals</source><creator>He, Xin ; Bresser, Dominic ; Passerini, Stefano ; Baakes, Florian ; Krewer, Ulrike ; Lopez, Jeffrey ; Mallia, Christopher Thomas ; Shao-Horn, Yang ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Soto, Fernando A. ; Ponce, Victor ; Seminario, Jorge M. ; Balbuena, Perla B. ; Jia, Hao ; Xu, Wu ; Xu, Yaobin ; Wang, Chongmin ; Horstmann, Birger ; Amine, Rachid ; Su, Chi-Cheung ; Shi, Jiayan ; Amine, Khalil ; Winter, Martin ; Latz, Arnulf ; Kostecki, Robert</creator><creatorcontrib>He, Xin ; Bresser, Dominic ; Passerini, Stefano ; Baakes, Florian ; Krewer, Ulrike ; Lopez, Jeffrey ; Mallia, Christopher Thomas ; Shao-Horn, Yang ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Soto, Fernando A. ; Ponce, Victor ; Seminario, Jorge M. ; Balbuena, Perla B. ; Jia, Hao ; Xu, Wu ; Xu, Yaobin ; Wang, Chongmin ; Horstmann, Birger ; Amine, Rachid ; Su, Chi-Cheung ; Shi, Jiayan ; Amine, Khalil ; Winter, Martin ; Latz, Arnulf ; Kostecki, Robert ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid electrolyte interphase) determines ionic diffusion and the structural and morphological evolution of the Li metal electrode upon cycling. In this Review, we discuss spontaneous and operation-induced reactions at the Li metal–electrolyte interface from a corrosion science perspective. We highlight that the instantaneous formation of a thin protective film of corrosion products at the Li surface, which acts as a barrier to further chemical reactions with the electrolyte, precedes film reformation, which occurs during subsequent electrochemical stripping and plating of Li during battery operation. Finally, we discuss solutions to overcoming remaining challenges of Li metal batteries related to Li surface science, electrolyte chemistry, cell engineering and the intrinsic instability of the Li metal–electrolyte interface. Rechargeable Li metal batteries are currently limited by electrolyte decomposition and rapid Li consumption. Li plating and stripping greatly depend on the solid electrolyte interphase formed at the Li metal–liquid electrolyte interface. This Review discusses the reactions occurring at this interface from a corrosion science perspective, highlighting the requirements for an ideal passivation layer.</description><identifier>ISSN: 2058-8437</identifier><identifier>EISSN: 2058-8437</identifier><identifier>DOI: 10.1038/s41578-021-00345-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/4077/4079/891 ; 639/638/161/891 ; Batteries ; Biomaterials ; Chemical reactions ; Chemistry and Materials Science ; Condensed Matter Physics ; Consumption ; Corrosion ; Corrosion products ; Decomposition ; Electrolytes ; ENERGY STORAGE ; Interface stability ; Ion diffusion ; Lithium ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Passivity ; Plating ; Rechargeable batteries ; Review Article ; Solid electrolytes ; Storage batteries</subject><ispartof>Nature reviews. Materials, 2021-11, Vol.6 (11), p.1036-1052</ispartof><rights>Springer Nature Limited 2021</rights><rights>Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-18f84aac9e2ce06e6ffc4b883a900a6d671938a06bff08f97533357fd7a4d72e3</citedby><cites>FETCH-LOGICAL-c390t-18f84aac9e2ce06e6ffc4b883a900a6d671938a06bff08f97533357fd7a4d72e3</cites><orcidid>0000-0003-1449-8172 ; 0000-0002-6606-5304 ; 0000-0002-0692-8331 ; 0000-0001-6429-6048 ; 0000-0002-1500-0578 ; 0000-0002-6425-5550 ; 0000-0001-6876-0020 ; 0000-0002-5984-5935 ; 0000-0001-8714-2121 ; 0000-0001-8432-240X ; 0000-0001-9206-3719 ; 0000-0002-5312-3149 ; 0000-0002-2685-8684 ; 0000-0002-9945-3514 ; 0000-0002-0926-071X ; 0000-0003-3327-0958 ; 0000000264255550 ; 0000000314498172 ; 0000000226858684 ; 0000000164296048 ; 0000000299453514 ; 0000000215000578 ; 000000018432240X ; 0000000192063719 ; 000000020926071X ; 0000000253123149 ; 0000000266065304 ; 0000000187142121 ; 0000000259845935 ; 0000000333270958 ; 0000000206928331 ; 0000000168760020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41578-021-00345-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41578-021-00345-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1845339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Bresser, Dominic</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><creatorcontrib>Baakes, Florian</creatorcontrib><creatorcontrib>Krewer, Ulrike</creatorcontrib><creatorcontrib>Lopez, Jeffrey</creatorcontrib><creatorcontrib>Mallia, Christopher Thomas</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Cekic-Laskovic, Isidora</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Soto, Fernando A.</creatorcontrib><creatorcontrib>Ponce, Victor</creatorcontrib><creatorcontrib>Seminario, Jorge M.</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Jia, Hao</creatorcontrib><creatorcontrib>Xu, Wu</creatorcontrib><creatorcontrib>Xu, Yaobin</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Horstmann, Birger</creatorcontrib><creatorcontrib>Amine, Rachid</creatorcontrib><creatorcontrib>Su, Chi-Cheung</creatorcontrib><creatorcontrib>Shi, Jiayan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Latz, Arnulf</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>The passivity of lithium electrodes in liquid electrolytes for secondary batteries</title><title>Nature reviews. Materials</title><addtitle>Nat Rev Mater</addtitle><description>Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid electrolyte interphase) determines ionic diffusion and the structural and morphological evolution of the Li metal electrode upon cycling. In this Review, we discuss spontaneous and operation-induced reactions at the Li metal–electrolyte interface from a corrosion science perspective. We highlight that the instantaneous formation of a thin protective film of corrosion products at the Li surface, which acts as a barrier to further chemical reactions with the electrolyte, precedes film reformation, which occurs during subsequent electrochemical stripping and plating of Li during battery operation. Finally, we discuss solutions to overcoming remaining challenges of Li metal batteries related to Li surface science, electrolyte chemistry, cell engineering and the intrinsic instability of the Li metal–electrolyte interface. Rechargeable Li metal batteries are currently limited by electrolyte decomposition and rapid Li consumption. Li plating and stripping greatly depend on the solid electrolyte interphase formed at the Li metal–liquid electrolyte interface. This Review discusses the reactions occurring at this interface from a corrosion science perspective, highlighting the requirements for an ideal passivation layer.</description><subject>639/301/299/891</subject><subject>639/4077/4079/891</subject><subject>639/638/161/891</subject><subject>Batteries</subject><subject>Biomaterials</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Consumption</subject><subject>Corrosion</subject><subject>Corrosion products</subject><subject>Decomposition</subject><subject>Electrolytes</subject><subject>ENERGY STORAGE</subject><subject>Interface stability</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Passivity</subject><subject>Plating</subject><subject>Rechargeable batteries</subject><subject>Review Article</subject><subject>Solid electrolytes</subject><subject>Storage batteries</subject><issn>2058-8437</issn><issn>2058-8437</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWLRfwNOi59XJJtnNHqX4DwqC1HNIsxObst20SSr02xtdRU-eJjx-b-blEXJB4ZoCkzeRU9HIEipaAjAuSnFEJhUIWUrOmuM_71MyjXENALRlvJXVhLwsVlhsdYzu3aVD4W3Ru7Ry-02BPZoUfIexcENWd3vX_Yj9IWXZ-lBENH7odDgUS50SBofxnJxY3Uecfs8z8np_t5g9lvPnh6fZ7bw0rIVUUmkl19q0WBmEGmtrDV9KyXQLoOuubnJIqaFeWgvSto1gjInGdo3mXVMhOyOX414fk1PRuIRmldMMOaKikme-zdDVCG2D3-0xJrX2-zDkXKoSLZV1na9lqhopE3yMAa3aBrfJv1IU1GfHauxY5Y7VV8dKZBMbTTHDwxuG39X_uD4AVOx_QQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>He, Xin</creator><creator>Bresser, Dominic</creator><creator>Passerini, Stefano</creator><creator>Baakes, Florian</creator><creator>Krewer, Ulrike</creator><creator>Lopez, Jeffrey</creator><creator>Mallia, Christopher Thomas</creator><creator>Shao-Horn, Yang</creator><creator>Cekic-Laskovic, Isidora</creator><creator>Wiemers-Meyer, Simon</creator><creator>Soto, Fernando A.</creator><creator>Ponce, Victor</creator><creator>Seminario, Jorge M.</creator><creator>Balbuena, Perla B.</creator><creator>Jia, Hao</creator><creator>Xu, Wu</creator><creator>Xu, Yaobin</creator><creator>Wang, Chongmin</creator><creator>Horstmann, Birger</creator><creator>Amine, Rachid</creator><creator>Su, Chi-Cheung</creator><creator>Shi, Jiayan</creator><creator>Amine, Khalil</creator><creator>Winter, Martin</creator><creator>Latz, Arnulf</creator><creator>Kostecki, Robert</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1449-8172</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><orcidid>https://orcid.org/0000-0002-0692-8331</orcidid><orcidid>https://orcid.org/0000-0001-6429-6048</orcidid><orcidid>https://orcid.org/0000-0002-1500-0578</orcidid><orcidid>https://orcid.org/0000-0002-6425-5550</orcidid><orcidid>https://orcid.org/0000-0001-6876-0020</orcidid><orcidid>https://orcid.org/0000-0002-5984-5935</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000-0001-8432-240X</orcidid><orcidid>https://orcid.org/0000-0001-9206-3719</orcidid><orcidid>https://orcid.org/0000-0002-5312-3149</orcidid><orcidid>https://orcid.org/0000-0002-2685-8684</orcidid><orcidid>https://orcid.org/0000-0002-9945-3514</orcidid><orcidid>https://orcid.org/0000-0002-0926-071X</orcidid><orcidid>https://orcid.org/0000-0003-3327-0958</orcidid><orcidid>https://orcid.org/0000000264255550</orcidid><orcidid>https://orcid.org/0000000314498172</orcidid><orcidid>https://orcid.org/0000000226858684</orcidid><orcidid>https://orcid.org/0000000164296048</orcidid><orcidid>https://orcid.org/0000000299453514</orcidid><orcidid>https://orcid.org/0000000215000578</orcidid><orcidid>https://orcid.org/000000018432240X</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/000000020926071X</orcidid><orcidid>https://orcid.org/0000000253123149</orcidid><orcidid>https://orcid.org/0000000266065304</orcidid><orcidid>https://orcid.org/0000000187142121</orcidid><orcidid>https://orcid.org/0000000259845935</orcidid><orcidid>https://orcid.org/0000000333270958</orcidid><orcidid>https://orcid.org/0000000206928331</orcidid><orcidid>https://orcid.org/0000000168760020</orcidid></search><sort><creationdate>20211101</creationdate><title>The passivity of lithium electrodes in liquid electrolytes for secondary batteries</title><author>He, Xin ; Bresser, Dominic ; Passerini, Stefano ; Baakes, Florian ; Krewer, Ulrike ; Lopez, Jeffrey ; Mallia, Christopher Thomas ; Shao-Horn, Yang ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Soto, Fernando A. ; Ponce, Victor ; Seminario, Jorge M. ; Balbuena, Perla B. ; Jia, Hao ; Xu, Wu ; Xu, Yaobin ; Wang, Chongmin ; Horstmann, Birger ; Amine, Rachid ; Su, Chi-Cheung ; Shi, Jiayan ; Amine, Khalil ; Winter, Martin ; Latz, Arnulf ; Kostecki, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-18f84aac9e2ce06e6ffc4b883a900a6d671938a06bff08f97533357fd7a4d72e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/299/891</topic><topic>639/4077/4079/891</topic><topic>639/638/161/891</topic><topic>Batteries</topic><topic>Biomaterials</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Consumption</topic><topic>Corrosion</topic><topic>Corrosion products</topic><topic>Decomposition</topic><topic>Electrolytes</topic><topic>ENERGY STORAGE</topic><topic>Interface stability</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Passivity</topic><topic>Plating</topic><topic>Rechargeable batteries</topic><topic>Review Article</topic><topic>Solid electrolytes</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Bresser, Dominic</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><creatorcontrib>Baakes, Florian</creatorcontrib><creatorcontrib>Krewer, Ulrike</creatorcontrib><creatorcontrib>Lopez, Jeffrey</creatorcontrib><creatorcontrib>Mallia, Christopher Thomas</creatorcontrib><creatorcontrib>Shao-Horn, Yang</creatorcontrib><creatorcontrib>Cekic-Laskovic, Isidora</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Soto, Fernando A.</creatorcontrib><creatorcontrib>Ponce, Victor</creatorcontrib><creatorcontrib>Seminario, Jorge M.</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Jia, Hao</creatorcontrib><creatorcontrib>Xu, Wu</creatorcontrib><creatorcontrib>Xu, Yaobin</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Horstmann, Birger</creatorcontrib><creatorcontrib>Amine, Rachid</creatorcontrib><creatorcontrib>Su, Chi-Cheung</creatorcontrib><creatorcontrib>Shi, Jiayan</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Latz, Arnulf</creatorcontrib><creatorcontrib>Kostecki, Robert</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature reviews. Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xin</au><au>Bresser, Dominic</au><au>Passerini, Stefano</au><au>Baakes, Florian</au><au>Krewer, Ulrike</au><au>Lopez, Jeffrey</au><au>Mallia, Christopher Thomas</au><au>Shao-Horn, Yang</au><au>Cekic-Laskovic, Isidora</au><au>Wiemers-Meyer, Simon</au><au>Soto, Fernando A.</au><au>Ponce, Victor</au><au>Seminario, Jorge M.</au><au>Balbuena, Perla B.</au><au>Jia, Hao</au><au>Xu, Wu</au><au>Xu, Yaobin</au><au>Wang, Chongmin</au><au>Horstmann, Birger</au><au>Amine, Rachid</au><au>Su, Chi-Cheung</au><au>Shi, Jiayan</au><au>Amine, Khalil</au><au>Winter, Martin</au><au>Latz, Arnulf</au><au>Kostecki, Robert</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The passivity of lithium electrodes in liquid electrolytes for secondary batteries</atitle><jtitle>Nature reviews. Materials</jtitle><stitle>Nat Rev Mater</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>6</volume><issue>11</issue><spage>1036</spage><epage>1052</epage><pages>1036-1052</pages><issn>2058-8437</issn><eissn>2058-8437</eissn><abstract>Rechargeable Li metal batteries are currently limited by safety concerns, continuous electrolyte decomposition and rapid consumption of Li. These issues are mainly related to reactions occurring at the Li metal–liquid electrolyte interface. The formation of a passivation film (that is, a solid electrolyte interphase) determines ionic diffusion and the structural and morphological evolution of the Li metal electrode upon cycling. In this Review, we discuss spontaneous and operation-induced reactions at the Li metal–electrolyte interface from a corrosion science perspective. We highlight that the instantaneous formation of a thin protective film of corrosion products at the Li surface, which acts as a barrier to further chemical reactions with the electrolyte, precedes film reformation, which occurs during subsequent electrochemical stripping and plating of Li during battery operation. Finally, we discuss solutions to overcoming remaining challenges of Li metal batteries related to Li surface science, electrolyte chemistry, cell engineering and the intrinsic instability of the Li metal–electrolyte interface. Rechargeable Li metal batteries are currently limited by electrolyte decomposition and rapid Li consumption. Li plating and stripping greatly depend on the solid electrolyte interphase formed at the Li metal–liquid electrolyte interface. This Review discusses the reactions occurring at this interface from a corrosion science perspective, highlighting the requirements for an ideal passivation layer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41578-021-00345-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1449-8172</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><orcidid>https://orcid.org/0000-0002-0692-8331</orcidid><orcidid>https://orcid.org/0000-0001-6429-6048</orcidid><orcidid>https://orcid.org/0000-0002-1500-0578</orcidid><orcidid>https://orcid.org/0000-0002-6425-5550</orcidid><orcidid>https://orcid.org/0000-0001-6876-0020</orcidid><orcidid>https://orcid.org/0000-0002-5984-5935</orcidid><orcidid>https://orcid.org/0000-0001-8714-2121</orcidid><orcidid>https://orcid.org/0000-0001-8432-240X</orcidid><orcidid>https://orcid.org/0000-0001-9206-3719</orcidid><orcidid>https://orcid.org/0000-0002-5312-3149</orcidid><orcidid>https://orcid.org/0000-0002-2685-8684</orcidid><orcidid>https://orcid.org/0000-0002-9945-3514</orcidid><orcidid>https://orcid.org/0000-0002-0926-071X</orcidid><orcidid>https://orcid.org/0000-0003-3327-0958</orcidid><orcidid>https://orcid.org/0000000264255550</orcidid><orcidid>https://orcid.org/0000000314498172</orcidid><orcidid>https://orcid.org/0000000226858684</orcidid><orcidid>https://orcid.org/0000000164296048</orcidid><orcidid>https://orcid.org/0000000299453514</orcidid><orcidid>https://orcid.org/0000000215000578</orcidid><orcidid>https://orcid.org/000000018432240X</orcidid><orcidid>https://orcid.org/0000000192063719</orcidid><orcidid>https://orcid.org/000000020926071X</orcidid><orcidid>https://orcid.org/0000000253123149</orcidid><orcidid>https://orcid.org/0000000266065304</orcidid><orcidid>https://orcid.org/0000000187142121</orcidid><orcidid>https://orcid.org/0000000259845935</orcidid><orcidid>https://orcid.org/0000000333270958</orcidid><orcidid>https://orcid.org/0000000206928331</orcidid><orcidid>https://orcid.org/0000000168760020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-8437
ispartof Nature reviews. Materials, 2021-11, Vol.6 (11), p.1036-1052
issn 2058-8437
2058-8437
language eng
recordid cdi_osti_scitechconnect_1845339
source Springer Nature - Complete Springer Journals
subjects 639/301/299/891
639/4077/4079/891
639/638/161/891
Batteries
Biomaterials
Chemical reactions
Chemistry and Materials Science
Condensed Matter Physics
Consumption
Corrosion
Corrosion products
Decomposition
Electrolytes
ENERGY STORAGE
Interface stability
Ion diffusion
Lithium
Materials Science
Nanotechnology
Optical and Electronic Materials
Passivity
Plating
Rechargeable batteries
Review Article
Solid electrolytes
Storage batteries
title The passivity of lithium electrodes in liquid electrolytes for secondary batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20passivity%20of%20lithium%20electrodes%20in%20liquid%20electrolytes%20for%20secondary%20batteries&rft.jtitle=Nature%20reviews.%20Materials&rft.au=He,%20Xin&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-11-01&rft.volume=6&rft.issue=11&rft.spage=1036&rft.epage=1052&rft.pages=1036-1052&rft.issn=2058-8437&rft.eissn=2058-8437&rft_id=info:doi/10.1038/s41578-021-00345-5&rft_dat=%3Cproquest_osti_%3E2591866900%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591866900&rft_id=info:pmid/&rfr_iscdi=true