Some exactly solvable and tunable frustrated spin models
We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully...
Gespeichert in:
Veröffentlicht in: | Physica A 2022-05, Vol.594, p.127007, Article 127007 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 127007 |
container_title | Physica A |
container_volume | 594 |
creator | Caravelli, F. |
description | We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully frustrated model, which interpolates between Onsager’s 2D Ising model and the Villain one. We then discuss spin ice models on a tree, which can be solved exactly using recursions a lá Bethe. |
doi_str_mv | 10.1016/j.physa.2022.127007 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1845262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437122000863</els_id><sourcerecordid>S0378437122000863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-468d29f5a66c16a4b12274d4684db1089d138ee68b150847df1eb81038c349743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai_Fe2smSZv04EHEL1jwoJ5DmkzZLN12SbKL--9tt549zTC8zwvzEHILtAAK1f2m2K2P0RSMMlYAk5TKM7IAJXnOAOpzsqBcqlxwCZfkKsYNpRQkZwuiPoctZvhjbOqOWRy6g2k6zEzvsrTvT3sb9jEFk9Blcef7bDs47OI1uWhNF_Hmby7J98vz19Nbvvp4fX96XOWWszLlolKO1W1pqspCZUQDjEnhxrNwDVBVO-AKsVINlFQJ6VrARgHlynJRS8GX5G7uHWLyOlqf0K7t0PdokwYlSlaxMcTnkA1DjAFbvQt-a8JRA9WTIb3RJ0N6MqRnQyP1MFPjO3jwGKZ67C06H6Z2N_h_-V_3wm54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some exactly solvable and tunable frustrated spin models</title><source>Access via ScienceDirect (Elsevier)</source><creator>Caravelli, F.</creator><creatorcontrib>Caravelli, F. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully frustrated model, which interpolates between Onsager’s 2D Ising model and the Villain one. We then discuss spin ice models on a tree, which can be solved exactly using recursions a lá Bethe.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2022.127007</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Exact solutions ; exactly solvable ; Frustration ; mathematics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Spin ice ; spin models</subject><ispartof>Physica A, 2022-05, Vol.594, p.127007, Article 127007</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-468d29f5a66c16a4b12274d4684db1089d138ee68b150847df1eb81038c349743</cites><orcidid>0000000179643030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physa.2022.127007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1845262$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Caravelli, F.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Some exactly solvable and tunable frustrated spin models</title><title>Physica A</title><description>We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully frustrated model, which interpolates between Onsager’s 2D Ising model and the Villain one. We then discuss spin ice models on a tree, which can be solved exactly using recursions a lá Bethe.</description><subject>Exact solutions</subject><subject>exactly solvable</subject><subject>Frustration</subject><subject>mathematics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Spin ice</subject><subject>spin models</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai_Fe2smSZv04EHEL1jwoJ5DmkzZLN12SbKL--9tt549zTC8zwvzEHILtAAK1f2m2K2P0RSMMlYAk5TKM7IAJXnOAOpzsqBcqlxwCZfkKsYNpRQkZwuiPoctZvhjbOqOWRy6g2k6zEzvsrTvT3sb9jEFk9Blcef7bDs47OI1uWhNF_Hmby7J98vz19Nbvvp4fX96XOWWszLlolKO1W1pqspCZUQDjEnhxrNwDVBVO-AKsVINlFQJ6VrARgHlynJRS8GX5G7uHWLyOlqf0K7t0PdokwYlSlaxMcTnkA1DjAFbvQt-a8JRA9WTIb3RJ0N6MqRnQyP1MFPjO3jwGKZ67C06H6Z2N_h_-V_3wm54</recordid><startdate>20220515</startdate><enddate>20220515</enddate><creator>Caravelli, F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000179643030</orcidid></search><sort><creationdate>20220515</creationdate><title>Some exactly solvable and tunable frustrated spin models</title><author>Caravelli, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-468d29f5a66c16a4b12274d4684db1089d138ee68b150847df1eb81038c349743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Exact solutions</topic><topic>exactly solvable</topic><topic>Frustration</topic><topic>mathematics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Spin ice</topic><topic>spin models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caravelli, F.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caravelli, F.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some exactly solvable and tunable frustrated spin models</atitle><jtitle>Physica A</jtitle><date>2022-05-15</date><risdate>2022</risdate><volume>594</volume><spage>127007</spage><pages>127007-</pages><artnum>127007</artnum><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully frustrated model, which interpolates between Onsager’s 2D Ising model and the Villain one. We then discuss spin ice models on a tree, which can be solved exactly using recursions a lá Bethe.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2022.127007</doi><orcidid>https://orcid.org/0000000179643030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4371 |
ispartof | Physica A, 2022-05, Vol.594, p.127007, Article 127007 |
issn | 0378-4371 1873-2119 |
language | eng |
recordid | cdi_osti_scitechconnect_1845262 |
source | Access via ScienceDirect (Elsevier) |
subjects | Exact solutions exactly solvable Frustration mathematics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Spin ice spin models |
title | Some exactly solvable and tunable frustrated spin models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20exactly%20solvable%20and%20tunable%20frustrated%20spin%20models&rft.jtitle=Physica%20A&rft.au=Caravelli,%20F.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-05-15&rft.volume=594&rft.spage=127007&rft.pages=127007-&rft.artnum=127007&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2022.127007&rft_dat=%3Celsevier_osti_%3ES0378437122000863%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378437122000863&rfr_iscdi=true |