Some exactly solvable and tunable frustrated spin models

We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2022-05, Vol.594, p.127007, Article 127007
1. Verfasser: Caravelli, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 127007
container_title Physica A
container_volume 594
creator Caravelli, F.
description We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully frustrated model, which interpolates between Onsager’s 2D Ising model and the Villain one. We then discuss spin ice models on a tree, which can be solved exactly using recursions a lá Bethe.
doi_str_mv 10.1016/j.physa.2022.127007
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1845262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437122000863</els_id><sourcerecordid>S0378437122000863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-468d29f5a66c16a4b12274d4684db1089d138ee68b150847df1eb81038c349743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai_Fe2smSZv04EHEL1jwoJ5DmkzZLN12SbKL--9tt549zTC8zwvzEHILtAAK1f2m2K2P0RSMMlYAk5TKM7IAJXnOAOpzsqBcqlxwCZfkKsYNpRQkZwuiPoctZvhjbOqOWRy6g2k6zEzvsrTvT3sb9jEFk9Blcef7bDs47OI1uWhNF_Hmby7J98vz19Nbvvp4fX96XOWWszLlolKO1W1pqspCZUQDjEnhxrNwDVBVO-AKsVINlFQJ6VrARgHlynJRS8GX5G7uHWLyOlqf0K7t0PdokwYlSlaxMcTnkA1DjAFbvQt-a8JRA9WTIb3RJ0N6MqRnQyP1MFPjO3jwGKZ67C06H6Z2N_h_-V_3wm54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some exactly solvable and tunable frustrated spin models</title><source>Access via ScienceDirect (Elsevier)</source><creator>Caravelli, F.</creator><creatorcontrib>Caravelli, F. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully frustrated model, which interpolates between Onsager’s 2D Ising model and the Villain one. We then discuss spin ice models on a tree, which can be solved exactly using recursions a lá Bethe.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2022.127007</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Exact solutions ; exactly solvable ; Frustration ; mathematics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Spin ice ; spin models</subject><ispartof>Physica A, 2022-05, Vol.594, p.127007, Article 127007</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-468d29f5a66c16a4b12274d4684db1089d138ee68b150847df1eb81038c349743</cites><orcidid>0000000179643030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physa.2022.127007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1845262$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Caravelli, F.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Some exactly solvable and tunable frustrated spin models</title><title>Physica A</title><description>We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully frustrated model, which interpolates between Onsager’s 2D Ising model and the Villain one. We then discuss spin ice models on a tree, which can be solved exactly using recursions a lá Bethe.</description><subject>Exact solutions</subject><subject>exactly solvable</subject><subject>Frustration</subject><subject>mathematics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Spin ice</subject><subject>spin models</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai_Fe2smSZv04EHEL1jwoJ5DmkzZLN12SbKL--9tt549zTC8zwvzEHILtAAK1f2m2K2P0RSMMlYAk5TKM7IAJXnOAOpzsqBcqlxwCZfkKsYNpRQkZwuiPoctZvhjbOqOWRy6g2k6zEzvsrTvT3sb9jEFk9Blcef7bDs47OI1uWhNF_Hmby7J98vz19Nbvvp4fX96XOWWszLlolKO1W1pqspCZUQDjEnhxrNwDVBVO-AKsVINlFQJ6VrARgHlynJRS8GX5G7uHWLyOlqf0K7t0PdokwYlSlaxMcTnkA1DjAFbvQt-a8JRA9WTIb3RJ0N6MqRnQyP1MFPjO3jwGKZ67C06H6Z2N_h_-V_3wm54</recordid><startdate>20220515</startdate><enddate>20220515</enddate><creator>Caravelli, F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000179643030</orcidid></search><sort><creationdate>20220515</creationdate><title>Some exactly solvable and tunable frustrated spin models</title><author>Caravelli, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-468d29f5a66c16a4b12274d4684db1089d138ee68b150847df1eb81038c349743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Exact solutions</topic><topic>exactly solvable</topic><topic>Frustration</topic><topic>mathematics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Spin ice</topic><topic>spin models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caravelli, F.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caravelli, F.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some exactly solvable and tunable frustrated spin models</atitle><jtitle>Physica A</jtitle><date>2022-05-15</date><risdate>2022</risdate><volume>594</volume><spage>127007</spage><pages>127007-</pages><artnum>127007</artnum><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>We discuss three exactly solvable spin models of geometric frustration. First, we discuss a 1-parameter subfamily of the 16 vertex model, which can be mapped to a planar Ising model and solved via Fisher-Dubedát decorations. We then consider a 1-parameter family generalization of the Villain’s fully frustrated model, which interpolates between Onsager’s 2D Ising model and the Villain one. We then discuss spin ice models on a tree, which can be solved exactly using recursions a lá Bethe.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2022.127007</doi><orcidid>https://orcid.org/0000000179643030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2022-05, Vol.594, p.127007, Article 127007
issn 0378-4371
1873-2119
language eng
recordid cdi_osti_scitechconnect_1845262
source Access via ScienceDirect (Elsevier)
subjects Exact solutions
exactly solvable
Frustration
mathematics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Spin ice
spin models
title Some exactly solvable and tunable frustrated spin models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20exactly%20solvable%20and%20tunable%20frustrated%20spin%20models&rft.jtitle=Physica%20A&rft.au=Caravelli,%20F.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-05-15&rft.volume=594&rft.spage=127007&rft.pages=127007-&rft.artnum=127007&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2022.127007&rft_dat=%3Celsevier_osti_%3ES0378437122000863%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378437122000863&rfr_iscdi=true