Non-iterative characteristics analysis for high-pressure ramp loading

Here in the canonical ramp compression experiment, a smoothly increasing load is applied to the surface of the sample, and the particle velocity history is measured at two or more different distances into the sample, at interfaces where the surface of the sample can be probed. The velocity histories...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2019-09, Vol.90 (9)
Hauptverfasser: Swift, Damian C., Fratanduono, Dayne E., Kraus, Richard G., Dowling, Evan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here in the canonical ramp compression experiment, a smoothly increasing load is applied to the surface of the sample, and the particle velocity history is measured at two or more different distances into the sample, at interfaces where the surface of the sample can be probed. The velocity histories are used to deduce a stress-density relation, usually using iterative Lagrangian analysis to account for the perturbing effect of the impedance mismatch at the interface. In that technique, a stress-density relation is assumed in order to correct for the perturbation and is adjusted until it becomes consistent with the deduced stress-density relation. This process is subject to the usual difficulties of nonlinear optimization, such as the existence of local minima (sensitivity to the initial guess), possible failure to converge, and relatively large computational effort. We show that, by considering the interaction of successive characteristics reaching a free surface, the stress-density relation can be deduced directly by recursion rather than iteration. This calculation is orders of magnitude faster than iterative analysis and does not require an initial guess. Direct recursion may be less suitable for very noisy data, but it was robust when applied to trial data. The stress-density relation deduced was identical to the result from iterative Lagrangian analysis.
ISSN:0034-6748
1089-7623