Periodic Trends in Adsorption Energies around Single-Atom Alloy Active Sites

Single-atom alloys (SAAs) make up a special class of alloy surface catalysts that offer well-defined, isolated active sites in a more inert metal host. The dopant sites are generally assumed to have little or no influence on the properties of the host metal, and transport of chemical reactants and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-10, Vol.12 (41), p.10060-10067
Hauptverfasser: Schumann, Julia, Bao, Yutian, Hannagan, Ryan T, Sykes, E. Charles H, Stamatakis, Michail, Michaelides, Angelos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-atom alloys (SAAs) make up a special class of alloy surface catalysts that offer well-defined, isolated active sites in a more inert metal host. The dopant sites are generally assumed to have little or no influence on the properties of the host metal, and transport of chemical reactants and products to and from the dopant sites is generally assumed to be facile. Here, by performing density functional theory calculations and surface science experiments, we identify a new physical effect on SAA surfaces, whereby adsorption is destabilized by ≤300 meV on host sites within the perimeter of the reactive dopant site. We identify periodic trends for this behavior and demonstrate a zone of exclusion around the reactive sites for a range of adsorbates and combinations of host and dopant metals. Experiments confirm an increased barrier for diffusion of CO toward the dopant on a RhCu SAA. This effect offers new possibilities for understanding and designing active sites with tunable energetic landscapes surrounding them.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.1c02497