Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations
Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-01, Vol.906 (2), p.74 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 74 |
container_title | The Astrophysical journal |
container_volume | 906 |
creator | Takhtaganov, Timur Luki, Zarija Müller, Juliane Morozov, Dmitriy |
description | Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to accurately forward-model physical behavior on small scales is via expensive numerical simulations, which are further "emulated" due to their high cost. Emulators are commonly built with a set of simulations covering the parameter space with Latin hypercube sampling and an interpolation procedure; the aim is to establish an approximately constant prediction error across the hypercube. In this paper, we provide a description of a novel statistical framework for obtaining accurate parameter constraints. The proposed framework uses multi-output Gaussian process emulators that are adaptively constructed using Bayesian optimization methods with the goal of maintaining a low emulation error in the region of the hypercube preferred by the observational data. In this paper, we compare several approaches for constructing multi-output emulators that enable us to take possible inter-output correlations into account while maintaining the efficiency needed for inference. Using a Ly forest flux power spectrum, we demonstrate that our adaptive approach requires considerably fewer-by a factor of a few in the Ly P(k) case considered here-simulations compared to the emulation based on Latin hypercube sampling, and that the method is more robust in reconstructing parameters and their Bayesian credible intervals. |
doi_str_mv | 10.3847/1538-4357/abc8ed |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_1844518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476868321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-c7fb3475312c87264b2b36feca56af3e4118978d59dda1156318c69cdda4dc2e3</originalsourceid><addsrcrecordid>eNp9kEFLxDAUhIMouK7ePQb1aLVp0iT1JkVdYVFBBW8hTRM3yzapSVbx39ulohfx9JjHN8MwAByi_Axzws5RiXlGcMnOZaO4brfA5Oe1DSZ5npOMYvayC_ZiXG5kUVUTYGofO6vgrTM6aKf0Bay9iylI66x7hQ8yyE4nHSL8sGkB75uow7tMdoCgdC2UcGZfF6tPOLedTbqFd-uu0QF6Ax9tt16N6D7YMXIV9cH3nYLn66unepbN729u68t5pkhOU6aYaTBhJUaF4qygpCkaTI1WsqTSYE0Q4hXjbVm1rUSopBhxRSs1KNKqQuMpOBpzfUxWRDU0UgvlndMqCcQJKREfoOMR6oN_W-uYxNKvgxt6iYIwyinHBRqofKRU8DEGbUQfbCfDp0C52EwuNvuKzb5inHywnI4W6_vfzH_wkz9w2S9FlVNRCEZE3xr8BRlfkF4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476868321</pqid></control><display><type>article</type><title>Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations</title><source>IOP Publishing Free Content</source><creator>Takhtaganov, Timur ; Luki, Zarija ; Müller, Juliane ; Morozov, Dmitriy</creator><creatorcontrib>Takhtaganov, Timur ; Luki, Zarija ; Müller, Juliane ; Morozov, Dmitriy ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to accurately forward-model physical behavior on small scales is via expensive numerical simulations, which are further "emulated" due to their high cost. Emulators are commonly built with a set of simulations covering the parameter space with Latin hypercube sampling and an interpolation procedure; the aim is to establish an approximately constant prediction error across the hypercube. In this paper, we provide a description of a novel statistical framework for obtaining accurate parameter constraints. The proposed framework uses multi-output Gaussian process emulators that are adaptively constructed using Bayesian optimization methods with the goal of maintaining a low emulation error in the region of the hypercube preferred by the observational data. In this paper, we compare several approaches for constructing multi-output emulators that enable us to take possible inter-output correlations into account while maintaining the efficiency needed for inference. Using a Ly forest flux power spectrum, we demonstrate that our adaptive approach requires considerably fewer-by a factor of a few in the Ly P(k) case considered here-simulations compared to the emulation based on Latin hypercube sampling, and that the method is more robust in reconstructing parameters and their Bayesian credible intervals.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abc8ed</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Bayesian analysis ; computational ; cosmological parameters ; cosmology ; cosmology: cosmological parameters ; Emulators ; galaxies ; galaxies: intergalactic medium ; Gaussian process ; Hypercubes ; Inference ; intergalactic medium ; Interpolation ; Inverse problems ; Latin hypercube sampling ; methods: computational ; Numerical simulations ; Optimization ; Parameter robustness ; Robustness (mathematics) ; Sampling ; Simulation</subject><ispartof>The Astrophysical journal, 2021-01, Vol.906 (2), p.74</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-c7fb3475312c87264b2b36feca56af3e4118978d59dda1156318c69cdda4dc2e3</citedby><cites>FETCH-LOGICAL-c406t-c7fb3475312c87264b2b36feca56af3e4118978d59dda1156318c69cdda4dc2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc8ed/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,778,782,883,27907,27908,38873,53850</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc8ed$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1844518$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Takhtaganov, Timur</creatorcontrib><creatorcontrib>Luki, Zarija</creatorcontrib><creatorcontrib>Müller, Juliane</creatorcontrib><creatorcontrib>Morozov, Dmitriy</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to accurately forward-model physical behavior on small scales is via expensive numerical simulations, which are further "emulated" due to their high cost. Emulators are commonly built with a set of simulations covering the parameter space with Latin hypercube sampling and an interpolation procedure; the aim is to establish an approximately constant prediction error across the hypercube. In this paper, we provide a description of a novel statistical framework for obtaining accurate parameter constraints. The proposed framework uses multi-output Gaussian process emulators that are adaptively constructed using Bayesian optimization methods with the goal of maintaining a low emulation error in the region of the hypercube preferred by the observational data. In this paper, we compare several approaches for constructing multi-output emulators that enable us to take possible inter-output correlations into account while maintaining the efficiency needed for inference. Using a Ly forest flux power spectrum, we demonstrate that our adaptive approach requires considerably fewer-by a factor of a few in the Ly P(k) case considered here-simulations compared to the emulation based on Latin hypercube sampling, and that the method is more robust in reconstructing parameters and their Bayesian credible intervals.</description><subject>Astronomical models</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Bayesian analysis</subject><subject>computational</subject><subject>cosmological parameters</subject><subject>cosmology</subject><subject>cosmology: cosmological parameters</subject><subject>Emulators</subject><subject>galaxies</subject><subject>galaxies: intergalactic medium</subject><subject>Gaussian process</subject><subject>Hypercubes</subject><subject>Inference</subject><subject>intergalactic medium</subject><subject>Interpolation</subject><subject>Inverse problems</subject><subject>Latin hypercube sampling</subject><subject>methods: computational</subject><subject>Numerical simulations</subject><subject>Optimization</subject><subject>Parameter robustness</subject><subject>Robustness (mathematics)</subject><subject>Sampling</subject><subject>Simulation</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAUhIMouK7ePQb1aLVp0iT1JkVdYVFBBW8hTRM3yzapSVbx39ulohfx9JjHN8MwAByi_Axzws5RiXlGcMnOZaO4brfA5Oe1DSZ5npOMYvayC_ZiXG5kUVUTYGofO6vgrTM6aKf0Bay9iylI66x7hQ8yyE4nHSL8sGkB75uow7tMdoCgdC2UcGZfF6tPOLedTbqFd-uu0QF6Ax9tt16N6D7YMXIV9cH3nYLn66unepbN729u68t5pkhOU6aYaTBhJUaF4qygpCkaTI1WsqTSYE0Q4hXjbVm1rUSopBhxRSs1KNKqQuMpOBpzfUxWRDU0UgvlndMqCcQJKREfoOMR6oN_W-uYxNKvgxt6iYIwyinHBRqofKRU8DEGbUQfbCfDp0C52EwuNvuKzb5inHywnI4W6_vfzH_wkz9w2S9FlVNRCEZE3xr8BRlfkF4</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Takhtaganov, Timur</creator><creator>Luki, Zarija</creator><creator>Müller, Juliane</creator><creator>Morozov, Dmitriy</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20210101</creationdate><title>Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations</title><author>Takhtaganov, Timur ; Luki, Zarija ; Müller, Juliane ; Morozov, Dmitriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-c7fb3475312c87264b2b36feca56af3e4118978d59dda1156318c69cdda4dc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Bayesian analysis</topic><topic>computational</topic><topic>cosmological parameters</topic><topic>cosmology</topic><topic>cosmology: cosmological parameters</topic><topic>Emulators</topic><topic>galaxies</topic><topic>galaxies: intergalactic medium</topic><topic>Gaussian process</topic><topic>Hypercubes</topic><topic>Inference</topic><topic>intergalactic medium</topic><topic>Interpolation</topic><topic>Inverse problems</topic><topic>Latin hypercube sampling</topic><topic>methods: computational</topic><topic>Numerical simulations</topic><topic>Optimization</topic><topic>Parameter robustness</topic><topic>Robustness (mathematics)</topic><topic>Sampling</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takhtaganov, Timur</creatorcontrib><creatorcontrib>Luki, Zarija</creatorcontrib><creatorcontrib>Müller, Juliane</creatorcontrib><creatorcontrib>Morozov, Dmitriy</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takhtaganov, Timur</au><au>Luki, Zarija</au><au>Müller, Juliane</au><au>Morozov, Dmitriy</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>906</volume><issue>2</issue><spage>74</spage><pages>74-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to accurately forward-model physical behavior on small scales is via expensive numerical simulations, which are further "emulated" due to their high cost. Emulators are commonly built with a set of simulations covering the parameter space with Latin hypercube sampling and an interpolation procedure; the aim is to establish an approximately constant prediction error across the hypercube. In this paper, we provide a description of a novel statistical framework for obtaining accurate parameter constraints. The proposed framework uses multi-output Gaussian process emulators that are adaptively constructed using Bayesian optimization methods with the goal of maintaining a low emulation error in the region of the hypercube preferred by the observational data. In this paper, we compare several approaches for constructing multi-output emulators that enable us to take possible inter-output correlations into account while maintaining the efficiency needed for inference. Using a Ly forest flux power spectrum, we demonstrate that our adaptive approach requires considerably fewer-by a factor of a few in the Ly P(k) case considered here-simulations compared to the emulation based on Latin hypercube sampling, and that the method is more robust in reconstructing parameters and their Bayesian credible intervals.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abc8ed</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-01, Vol.906 (2), p.74 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_1844518 |
source | IOP Publishing Free Content |
subjects | Astronomical models ASTRONOMY AND ASTROPHYSICS Astrophysics Bayesian analysis computational cosmological parameters cosmology cosmology: cosmological parameters Emulators galaxies galaxies: intergalactic medium Gaussian process Hypercubes Inference intergalactic medium Interpolation Inverse problems Latin hypercube sampling methods: computational Numerical simulations Optimization Parameter robustness Robustness (mathematics) Sampling Simulation |
title | Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmic%20Inference:%20Constraining%20Parameters%20with%20Observations%20and%20a%20Highly%20Limited%20Number%20of%20Simulations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Takhtaganov,%20Timur&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-01-01&rft.volume=906&rft.issue=2&rft.spage=74&rft.pages=74-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abc8ed&rft_dat=%3Cproquest_O3W%3E2476868321%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476868321&rft_id=info:pmid/&rfr_iscdi=true |