Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations

Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-01, Vol.906 (2), p.74
Hauptverfasser: Takhtaganov, Timur, Luki, Zarija, Müller, Juliane, Morozov, Dmitriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 74
container_title The Astrophysical journal
container_volume 906
creator Takhtaganov, Timur
Luki, Zarija
Müller, Juliane
Morozov, Dmitriy
description Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to accurately forward-model physical behavior on small scales is via expensive numerical simulations, which are further "emulated" due to their high cost. Emulators are commonly built with a set of simulations covering the parameter space with Latin hypercube sampling and an interpolation procedure; the aim is to establish an approximately constant prediction error across the hypercube. In this paper, we provide a description of a novel statistical framework for obtaining accurate parameter constraints. The proposed framework uses multi-output Gaussian process emulators that are adaptively constructed using Bayesian optimization methods with the goal of maintaining a low emulation error in the region of the hypercube preferred by the observational data. In this paper, we compare several approaches for constructing multi-output emulators that enable us to take possible inter-output correlations into account while maintaining the efficiency needed for inference. Using a Ly forest flux power spectrum, we demonstrate that our adaptive approach requires considerably fewer-by a factor of a few in the Ly P(k) case considered here-simulations compared to the emulation based on Latin hypercube sampling, and that the method is more robust in reconstructing parameters and their Bayesian credible intervals.
doi_str_mv 10.3847/1538-4357/abc8ed
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_1844518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476868321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-c7fb3475312c87264b2b36feca56af3e4118978d59dda1156318c69cdda4dc2e3</originalsourceid><addsrcrecordid>eNp9kEFLxDAUhIMouK7ePQb1aLVp0iT1JkVdYVFBBW8hTRM3yzapSVbx39ulohfx9JjHN8MwAByi_Axzws5RiXlGcMnOZaO4brfA5Oe1DSZ5npOMYvayC_ZiXG5kUVUTYGofO6vgrTM6aKf0Bay9iylI66x7hQ8yyE4nHSL8sGkB75uow7tMdoCgdC2UcGZfF6tPOLedTbqFd-uu0QF6Ax9tt16N6D7YMXIV9cH3nYLn66unepbN729u68t5pkhOU6aYaTBhJUaF4qygpCkaTI1WsqTSYE0Q4hXjbVm1rUSopBhxRSs1KNKqQuMpOBpzfUxWRDU0UgvlndMqCcQJKREfoOMR6oN_W-uYxNKvgxt6iYIwyinHBRqofKRU8DEGbUQfbCfDp0C52EwuNvuKzb5inHywnI4W6_vfzH_wkz9w2S9FlVNRCEZE3xr8BRlfkF4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476868321</pqid></control><display><type>article</type><title>Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations</title><source>IOP Publishing Free Content</source><creator>Takhtaganov, Timur ; Luki, Zarija ; Müller, Juliane ; Morozov, Dmitriy</creator><creatorcontrib>Takhtaganov, Timur ; Luki, Zarija ; Müller, Juliane ; Morozov, Dmitriy ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to accurately forward-model physical behavior on small scales is via expensive numerical simulations, which are further "emulated" due to their high cost. Emulators are commonly built with a set of simulations covering the parameter space with Latin hypercube sampling and an interpolation procedure; the aim is to establish an approximately constant prediction error across the hypercube. In this paper, we provide a description of a novel statistical framework for obtaining accurate parameter constraints. The proposed framework uses multi-output Gaussian process emulators that are adaptively constructed using Bayesian optimization methods with the goal of maintaining a low emulation error in the region of the hypercube preferred by the observational data. In this paper, we compare several approaches for constructing multi-output emulators that enable us to take possible inter-output correlations into account while maintaining the efficiency needed for inference. Using a Ly forest flux power spectrum, we demonstrate that our adaptive approach requires considerably fewer-by a factor of a few in the Ly P(k) case considered here-simulations compared to the emulation based on Latin hypercube sampling, and that the method is more robust in reconstructing parameters and their Bayesian credible intervals.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abc8ed</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Bayesian analysis ; computational ; cosmological parameters ; cosmology ; cosmology: cosmological parameters ; Emulators ; galaxies ; galaxies: intergalactic medium ; Gaussian process ; Hypercubes ; Inference ; intergalactic medium ; Interpolation ; Inverse problems ; Latin hypercube sampling ; methods: computational ; Numerical simulations ; Optimization ; Parameter robustness ; Robustness (mathematics) ; Sampling ; Simulation</subject><ispartof>The Astrophysical journal, 2021-01, Vol.906 (2), p.74</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-c7fb3475312c87264b2b36feca56af3e4118978d59dda1156318c69cdda4dc2e3</citedby><cites>FETCH-LOGICAL-c406t-c7fb3475312c87264b2b36feca56af3e4118978d59dda1156318c69cdda4dc2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc8ed/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,778,782,883,27907,27908,38873,53850</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abc8ed$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1844518$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Takhtaganov, Timur</creatorcontrib><creatorcontrib>Luki, Zarija</creatorcontrib><creatorcontrib>Müller, Juliane</creatorcontrib><creatorcontrib>Morozov, Dmitriy</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to accurately forward-model physical behavior on small scales is via expensive numerical simulations, which are further "emulated" due to their high cost. Emulators are commonly built with a set of simulations covering the parameter space with Latin hypercube sampling and an interpolation procedure; the aim is to establish an approximately constant prediction error across the hypercube. In this paper, we provide a description of a novel statistical framework for obtaining accurate parameter constraints. The proposed framework uses multi-output Gaussian process emulators that are adaptively constructed using Bayesian optimization methods with the goal of maintaining a low emulation error in the region of the hypercube preferred by the observational data. In this paper, we compare several approaches for constructing multi-output emulators that enable us to take possible inter-output correlations into account while maintaining the efficiency needed for inference. Using a Ly forest flux power spectrum, we demonstrate that our adaptive approach requires considerably fewer-by a factor of a few in the Ly P(k) case considered here-simulations compared to the emulation based on Latin hypercube sampling, and that the method is more robust in reconstructing parameters and their Bayesian credible intervals.</description><subject>Astronomical models</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Bayesian analysis</subject><subject>computational</subject><subject>cosmological parameters</subject><subject>cosmology</subject><subject>cosmology: cosmological parameters</subject><subject>Emulators</subject><subject>galaxies</subject><subject>galaxies: intergalactic medium</subject><subject>Gaussian process</subject><subject>Hypercubes</subject><subject>Inference</subject><subject>intergalactic medium</subject><subject>Interpolation</subject><subject>Inverse problems</subject><subject>Latin hypercube sampling</subject><subject>methods: computational</subject><subject>Numerical simulations</subject><subject>Optimization</subject><subject>Parameter robustness</subject><subject>Robustness (mathematics)</subject><subject>Sampling</subject><subject>Simulation</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAUhIMouK7ePQb1aLVp0iT1JkVdYVFBBW8hTRM3yzapSVbx39ulohfx9JjHN8MwAByi_Axzws5RiXlGcMnOZaO4brfA5Oe1DSZ5npOMYvayC_ZiXG5kUVUTYGofO6vgrTM6aKf0Bay9iylI66x7hQ8yyE4nHSL8sGkB75uow7tMdoCgdC2UcGZfF6tPOLedTbqFd-uu0QF6Ax9tt16N6D7YMXIV9cH3nYLn66unepbN729u68t5pkhOU6aYaTBhJUaF4qygpCkaTI1WsqTSYE0Q4hXjbVm1rUSopBhxRSs1KNKqQuMpOBpzfUxWRDU0UgvlndMqCcQJKREfoOMR6oN_W-uYxNKvgxt6iYIwyinHBRqofKRU8DEGbUQfbCfDp0C52EwuNvuKzb5inHywnI4W6_vfzH_wkz9w2S9FlVNRCEZE3xr8BRlfkF4</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Takhtaganov, Timur</creator><creator>Luki, Zarija</creator><creator>Müller, Juliane</creator><creator>Morozov, Dmitriy</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20210101</creationdate><title>Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations</title><author>Takhtaganov, Timur ; Luki, Zarija ; Müller, Juliane ; Morozov, Dmitriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-c7fb3475312c87264b2b36feca56af3e4118978d59dda1156318c69cdda4dc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Bayesian analysis</topic><topic>computational</topic><topic>cosmological parameters</topic><topic>cosmology</topic><topic>cosmology: cosmological parameters</topic><topic>Emulators</topic><topic>galaxies</topic><topic>galaxies: intergalactic medium</topic><topic>Gaussian process</topic><topic>Hypercubes</topic><topic>Inference</topic><topic>intergalactic medium</topic><topic>Interpolation</topic><topic>Inverse problems</topic><topic>Latin hypercube sampling</topic><topic>methods: computational</topic><topic>Numerical simulations</topic><topic>Optimization</topic><topic>Parameter robustness</topic><topic>Robustness (mathematics)</topic><topic>Sampling</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takhtaganov, Timur</creatorcontrib><creatorcontrib>Luki, Zarija</creatorcontrib><creatorcontrib>Müller, Juliane</creatorcontrib><creatorcontrib>Morozov, Dmitriy</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takhtaganov, Timur</au><au>Luki, Zarija</au><au>Müller, Juliane</au><au>Morozov, Dmitriy</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>906</volume><issue>2</issue><spage>74</spage><pages>74-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>Cosmological probes pose an inverse problem where the measurement result is obtained through observations, and the objective is to infer values of model parameters that characterize the underlying physical system-our universe, from these observations and theoretical forward-modeling. The only way to accurately forward-model physical behavior on small scales is via expensive numerical simulations, which are further "emulated" due to their high cost. Emulators are commonly built with a set of simulations covering the parameter space with Latin hypercube sampling and an interpolation procedure; the aim is to establish an approximately constant prediction error across the hypercube. In this paper, we provide a description of a novel statistical framework for obtaining accurate parameter constraints. The proposed framework uses multi-output Gaussian process emulators that are adaptively constructed using Bayesian optimization methods with the goal of maintaining a low emulation error in the region of the hypercube preferred by the observational data. In this paper, we compare several approaches for constructing multi-output emulators that enable us to take possible inter-output correlations into account while maintaining the efficiency needed for inference. Using a Ly forest flux power spectrum, we demonstrate that our adaptive approach requires considerably fewer-by a factor of a few in the Ly P(k) case considered here-simulations compared to the emulation based on Latin hypercube sampling, and that the method is more robust in reconstructing parameters and their Bayesian credible intervals.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abc8ed</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-01, Vol.906 (2), p.74
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_osti_scitechconnect_1844518
source IOP Publishing Free Content
subjects Astronomical models
ASTRONOMY AND ASTROPHYSICS
Astrophysics
Bayesian analysis
computational
cosmological parameters
cosmology
cosmology: cosmological parameters
Emulators
galaxies
galaxies: intergalactic medium
Gaussian process
Hypercubes
Inference
intergalactic medium
Interpolation
Inverse problems
Latin hypercube sampling
methods: computational
Numerical simulations
Optimization
Parameter robustness
Robustness (mathematics)
Sampling
Simulation
title Cosmic Inference: Constraining Parameters with Observations and a Highly Limited Number of Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmic%20Inference:%20Constraining%20Parameters%20with%20Observations%20and%20a%20Highly%20Limited%20Number%20of%20Simulations&rft.jtitle=The%20Astrophysical%20journal&rft.au=Takhtaganov,%20Timur&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-01-01&rft.volume=906&rft.issue=2&rft.spage=74&rft.pages=74-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abc8ed&rft_dat=%3Cproquest_O3W%3E2476868321%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476868321&rft_id=info:pmid/&rfr_iscdi=true