Extremely massive disc galaxies in the nearby Universe form through gas-rich minor mergers

ABSTRACT In our hierarchical structure-formation paradigm, the observed morphological evolution of massive galaxies – from rotationally supported discs to dispersion-dominated spheroids – is largely explained via galaxy merging. However, since mergers are likely to destroy discs, and the most massiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-02, Vol.511 (1), p.607-615
Hauptverfasser: Jackson, R A, Kaviraj, S, Martin, G, Devriendt, J E G, Noakes-Kettel, E A, Silk, J, Ogle, P, Dubois, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT In our hierarchical structure-formation paradigm, the observed morphological evolution of massive galaxies – from rotationally supported discs to dispersion-dominated spheroids – is largely explained via galaxy merging. However, since mergers are likely to destroy discs, and the most massive galaxies have the richest merger histories, it is surprising that any discs exist at all at the highest stellar masses. Recent theoretical work by our group has used a cosmological, hydrodynamical simulation to suggest that extremely massive (M* > 1011.4 M⊙) discs form primarily via minor mergers between spheroids and gas-rich satellites, which create new rotational stellar components and leave discs as remnants. Here, we use UV-optical and H i data of massive galaxies, from the Sloan Digital Sky Survey, Galaxy Evolution Explorer, Dark Energy Camera Legacy Survey (DECaLS), and Arecibo Legacy Fast ALFA surveys, to test these theoretical predictions. Observed massive discs account for ∼13 per cent of massive galaxies, in good agreement with theory (∼11 per cent). ∼64 per cent of the observed massive discs exhibit tidal features, which are likely to indicate recent minor mergers, in the deep DECaLS images (compared to ∼60 per cent in their simulated counterparts). The incidence of these features is at least four times higher than in low-mass discs, suggesting that, as predicted, minor mergers play a significant (and outsized) role in the formation of these systems. The empirical star formation rates agree well with theoretical predictions and, for a small galaxy sample with H i detections, the H i masses and fractions are consistent with the range predicted by the simulation. The good agreement between theory and observations indicates that extremely massive discs are indeed remnants of recent minor mergers between spheroids and gas-rich satellites.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stac058