Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes
Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activi...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-04, Vol.32 (17), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Zhang, Yuxin Hu, Anyang Liu, Jue Xu, Zhengrui Mu, Linqin Sainio, Sami Nordlund, Dennis Li, Luxi Sun, Cheng‐Jun Xiao, Xianghui Liu, Yijin Lin, Feng |
description | Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size‐dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron‐sized particles exhibit a holistic “core‐shell” charge distribution, whereas sub‐micron particles show more uniform redox reactions throughout the particles and ensembles. Sub‐micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials.
Controllable Li‐ion kinetics and depth‐dependent cationic/anionic redox reactions reveal the origin of size‐dependent electrochemical performance in disordered‐rocksalt materials. The work sheds light on the particle engineering for balancing the energy density and cycle life of disordered‐rocksalt cathodes. |
doi_str_mv | 10.1002/adfm.202110502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1843301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654046212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3842-983deec05376260c8ae3a5e6c769b6d9a144578b9f8c16e73a6d6701d3f88f2c3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhjdGExG9em70DPZjt9s9GvArYjR-JN6a0s5CEVtsi4onf4K_0V_iEgwePc1M8ryTmSfL9gnuEozpkTL1c5diSgguMN3IWoQT3mGYis11Tx63s50YJxiTsmR5K3MX7hVisiOVrBuhGxWS1VNAd_YDvj-_-jADZ8AldAvGv6NL66ABIlLOoN5YhRGgvo0p2OE8We-QdcvZBwMBDLr1-imqaUI9lcbeQNzNtmo1jbD3W9vZw-nJfe-8M7g-u-gdDzqaiZx2KsEMgMYFKznlWAsFTBXAdcmrITeVInlelGJY1UITDiVT3PASE8NqIWqqWTs7WO31zW8yaptAj7V3DnSSROSsUdFAhytoFvzLvLEgJ34eXHOXpLzIcc4poQ3VXVE6-BgD1HIW7LMKC0mwXIqXS_FyLb4JVKvAm53C4h9aHvdPr_6yP62xiGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654046212</pqid></control><display><type>article</type><title>Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Yuxin ; Hu, Anyang ; Liu, Jue ; Xu, Zhengrui ; Mu, Linqin ; Sainio, Sami ; Nordlund, Dennis ; Li, Luxi ; Sun, Cheng‐Jun ; Xiao, Xianghui ; Liu, Yijin ; Lin, Feng</creator><creatorcontrib>Zhang, Yuxin ; Hu, Anyang ; Liu, Jue ; Xu, Zhengrui ; Mu, Linqin ; Sainio, Sami ; Nordlund, Dennis ; Li, Luxi ; Sun, Cheng‐Jun ; Xiao, Xianghui ; Liu, Yijin ; Lin, Feng ; Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size‐dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron‐sized particles exhibit a holistic “core‐shell” charge distribution, whereas sub‐micron particles show more uniform redox reactions throughout the particles and ensembles. Sub‐micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials.
Controllable Li‐ion kinetics and depth‐dependent cationic/anionic redox reactions reveal the origin of size‐dependent electrochemical performance in disordered‐rocksalt materials. The work sheds light on the particle engineering for balancing the energy density and cycle life of disordered‐rocksalt cathodes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202110502</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cations ; Charge distribution ; disordered rocksalt cathodes ; Electrochemical analysis ; Heterogeneity ; heterogeneous charge distribution ; Kinetics ; Material properties ; MATERIALS SCIENCE ; Particle size ; particle size engineering ; Reaction kinetics ; Redox reactions ; size-dependent redox reactions ; Spatial distribution ; Stability</subject><ispartof>Advanced functional materials, 2022-04, Vol.32 (17), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3842-983deec05376260c8ae3a5e6c769b6d9a144578b9f8c16e73a6d6701d3f88f2c3</citedby><cites>FETCH-LOGICAL-c3842-983deec05376260c8ae3a5e6c769b6d9a144578b9f8c16e73a6d6701d3f88f2c3</cites><orcidid>0000-0002-2830-4159 ; 0000000228304159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202110502$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202110502$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1843301$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuxin</creatorcontrib><creatorcontrib>Hu, Anyang</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Xu, Zhengrui</creatorcontrib><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Sainio, Sami</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Li, Luxi</creatorcontrib><creatorcontrib>Sun, Cheng‐Jun</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes</title><title>Advanced functional materials</title><description>Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size‐dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron‐sized particles exhibit a holistic “core‐shell” charge distribution, whereas sub‐micron particles show more uniform redox reactions throughout the particles and ensembles. Sub‐micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials.
Controllable Li‐ion kinetics and depth‐dependent cationic/anionic redox reactions reveal the origin of size‐dependent electrochemical performance in disordered‐rocksalt materials. The work sheds light on the particle engineering for balancing the energy density and cycle life of disordered‐rocksalt cathodes.</description><subject>Cations</subject><subject>Charge distribution</subject><subject>disordered rocksalt cathodes</subject><subject>Electrochemical analysis</subject><subject>Heterogeneity</subject><subject>heterogeneous charge distribution</subject><subject>Kinetics</subject><subject>Material properties</subject><subject>MATERIALS SCIENCE</subject><subject>Particle size</subject><subject>particle size engineering</subject><subject>Reaction kinetics</subject><subject>Redox reactions</subject><subject>size-dependent redox reactions</subject><subject>Spatial distribution</subject><subject>Stability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PAjEQhjdGExG9em70DPZjt9s9GvArYjR-JN6a0s5CEVtsi4onf4K_0V_iEgwePc1M8ryTmSfL9gnuEozpkTL1c5diSgguMN3IWoQT3mGYis11Tx63s50YJxiTsmR5K3MX7hVisiOVrBuhGxWS1VNAd_YDvj-_-jADZ8AldAvGv6NL66ABIlLOoN5YhRGgvo0p2OE8We-QdcvZBwMBDLr1-imqaUI9lcbeQNzNtmo1jbD3W9vZw-nJfe-8M7g-u-gdDzqaiZx2KsEMgMYFKznlWAsFTBXAdcmrITeVInlelGJY1UITDiVT3PASE8NqIWqqWTs7WO31zW8yaptAj7V3DnSSROSsUdFAhytoFvzLvLEgJ34eXHOXpLzIcc4poQ3VXVE6-BgD1HIW7LMKC0mwXIqXS_FyLb4JVKvAm53C4h9aHvdPr_6yP62xiGw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhang, Yuxin</creator><creator>Hu, Anyang</creator><creator>Liu, Jue</creator><creator>Xu, Zhengrui</creator><creator>Mu, Linqin</creator><creator>Sainio, Sami</creator><creator>Nordlund, Dennis</creator><creator>Li, Luxi</creator><creator>Sun, Cheng‐Jun</creator><creator>Xiao, Xianghui</creator><creator>Liu, Yijin</creator><creator>Lin, Feng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2830-4159</orcidid><orcidid>https://orcid.org/0000000228304159</orcidid></search><sort><creationdate>20220401</creationdate><title>Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes</title><author>Zhang, Yuxin ; Hu, Anyang ; Liu, Jue ; Xu, Zhengrui ; Mu, Linqin ; Sainio, Sami ; Nordlund, Dennis ; Li, Luxi ; Sun, Cheng‐Jun ; Xiao, Xianghui ; Liu, Yijin ; Lin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3842-983deec05376260c8ae3a5e6c769b6d9a144578b9f8c16e73a6d6701d3f88f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cations</topic><topic>Charge distribution</topic><topic>disordered rocksalt cathodes</topic><topic>Electrochemical analysis</topic><topic>Heterogeneity</topic><topic>heterogeneous charge distribution</topic><topic>Kinetics</topic><topic>Material properties</topic><topic>MATERIALS SCIENCE</topic><topic>Particle size</topic><topic>particle size engineering</topic><topic>Reaction kinetics</topic><topic>Redox reactions</topic><topic>size-dependent redox reactions</topic><topic>Spatial distribution</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuxin</creatorcontrib><creatorcontrib>Hu, Anyang</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Xu, Zhengrui</creatorcontrib><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Sainio, Sami</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Li, Luxi</creatorcontrib><creatorcontrib>Sun, Cheng‐Jun</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuxin</au><au>Hu, Anyang</au><au>Liu, Jue</au><au>Xu, Zhengrui</au><au>Mu, Linqin</au><au>Sainio, Sami</au><au>Nordlund, Dennis</au><au>Li, Luxi</au><au>Sun, Cheng‐Jun</au><au>Xiao, Xianghui</au><au>Liu, Yijin</au><au>Lin, Feng</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes</atitle><jtitle>Advanced functional materials</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>32</volume><issue>17</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size‐dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron‐sized particles exhibit a holistic “core‐shell” charge distribution, whereas sub‐micron particles show more uniform redox reactions throughout the particles and ensembles. Sub‐micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials.
Controllable Li‐ion kinetics and depth‐dependent cationic/anionic redox reactions reveal the origin of size‐dependent electrochemical performance in disordered‐rocksalt materials. The work sheds light on the particle engineering for balancing the energy density and cycle life of disordered‐rocksalt cathodes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202110502</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2830-4159</orcidid><orcidid>https://orcid.org/0000000228304159</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-04, Vol.32 (17), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_1843301 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cations Charge distribution disordered rocksalt cathodes Electrochemical analysis Heterogeneity heterogeneous charge distribution Kinetics Material properties MATERIALS SCIENCE Particle size particle size engineering Reaction kinetics Redox reactions size-dependent redox reactions Spatial distribution Stability |
title | Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Particle%20Size%E2%80%90Dependent%20Redox%20Kinetics%20and%20Charge%20Distribution%20in%20Disordered%20Rocksalt%20Cathodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Yuxin&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2022-04-01&rft.volume=32&rft.issue=17&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202110502&rft_dat=%3Cproquest_osti_%3E2654046212%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654046212&rft_id=info:pmid/&rfr_iscdi=true |