Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes

Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-04, Vol.32 (17), p.n/a
Hauptverfasser: Zhang, Yuxin, Hu, Anyang, Liu, Jue, Xu, Zhengrui, Mu, Linqin, Sainio, Sami, Nordlund, Dennis, Li, Luxi, Sun, Cheng‐Jun, Xiao, Xianghui, Liu, Yijin, Lin, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page
container_title Advanced functional materials
container_volume 32
creator Zhang, Yuxin
Hu, Anyang
Liu, Jue
Xu, Zhengrui
Mu, Linqin
Sainio, Sami
Nordlund, Dennis
Li, Luxi
Sun, Cheng‐Jun
Xiao, Xianghui
Liu, Yijin
Lin, Feng
description Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size‐dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron‐sized particles exhibit a holistic “core‐shell” charge distribution, whereas sub‐micron particles show more uniform redox reactions throughout the particles and ensembles. Sub‐micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials. Controllable Li‐ion kinetics and depth‐dependent cationic/anionic redox reactions reveal the origin of size‐dependent electrochemical performance in disordered‐rocksalt materials. The work sheds light on the particle engineering for balancing the energy density and cycle life of disordered‐rocksalt cathodes.
doi_str_mv 10.1002/adfm.202110502
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1843301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654046212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3842-983deec05376260c8ae3a5e6c769b6d9a144578b9f8c16e73a6d6701d3f88f2c3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhjdGExG9em70DPZjt9s9GvArYjR-JN6a0s5CEVtsi4onf4K_0V_iEgwePc1M8ryTmSfL9gnuEozpkTL1c5diSgguMN3IWoQT3mGYis11Tx63s50YJxiTsmR5K3MX7hVisiOVrBuhGxWS1VNAd_YDvj-_-jADZ8AldAvGv6NL66ABIlLOoN5YhRGgvo0p2OE8We-QdcvZBwMBDLr1-imqaUI9lcbeQNzNtmo1jbD3W9vZw-nJfe-8M7g-u-gdDzqaiZx2KsEMgMYFKznlWAsFTBXAdcmrITeVInlelGJY1UITDiVT3PASE8NqIWqqWTs7WO31zW8yaptAj7V3DnSSROSsUdFAhytoFvzLvLEgJ34eXHOXpLzIcc4poQ3VXVE6-BgD1HIW7LMKC0mwXIqXS_FyLb4JVKvAm53C4h9aHvdPr_6yP62xiGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654046212</pqid></control><display><type>article</type><title>Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Yuxin ; Hu, Anyang ; Liu, Jue ; Xu, Zhengrui ; Mu, Linqin ; Sainio, Sami ; Nordlund, Dennis ; Li, Luxi ; Sun, Cheng‐Jun ; Xiao, Xianghui ; Liu, Yijin ; Lin, Feng</creator><creatorcontrib>Zhang, Yuxin ; Hu, Anyang ; Liu, Jue ; Xu, Zhengrui ; Mu, Linqin ; Sainio, Sami ; Nordlund, Dennis ; Li, Luxi ; Sun, Cheng‐Jun ; Xiao, Xianghui ; Liu, Yijin ; Lin, Feng ; Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size‐dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron‐sized particles exhibit a holistic “core‐shell” charge distribution, whereas sub‐micron particles show more uniform redox reactions throughout the particles and ensembles. Sub‐micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials. Controllable Li‐ion kinetics and depth‐dependent cationic/anionic redox reactions reveal the origin of size‐dependent electrochemical performance in disordered‐rocksalt materials. The work sheds light on the particle engineering for balancing the energy density and cycle life of disordered‐rocksalt cathodes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202110502</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cations ; Charge distribution ; disordered rocksalt cathodes ; Electrochemical analysis ; Heterogeneity ; heterogeneous charge distribution ; Kinetics ; Material properties ; MATERIALS SCIENCE ; Particle size ; particle size engineering ; Reaction kinetics ; Redox reactions ; size-dependent redox reactions ; Spatial distribution ; Stability</subject><ispartof>Advanced functional materials, 2022-04, Vol.32 (17), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3842-983deec05376260c8ae3a5e6c769b6d9a144578b9f8c16e73a6d6701d3f88f2c3</citedby><cites>FETCH-LOGICAL-c3842-983deec05376260c8ae3a5e6c769b6d9a144578b9f8c16e73a6d6701d3f88f2c3</cites><orcidid>0000-0002-2830-4159 ; 0000000228304159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202110502$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202110502$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1843301$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuxin</creatorcontrib><creatorcontrib>Hu, Anyang</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Xu, Zhengrui</creatorcontrib><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Sainio, Sami</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Li, Luxi</creatorcontrib><creatorcontrib>Sun, Cheng‐Jun</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes</title><title>Advanced functional materials</title><description>Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size‐dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron‐sized particles exhibit a holistic “core‐shell” charge distribution, whereas sub‐micron particles show more uniform redox reactions throughout the particles and ensembles. Sub‐micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials. Controllable Li‐ion kinetics and depth‐dependent cationic/anionic redox reactions reveal the origin of size‐dependent electrochemical performance in disordered‐rocksalt materials. The work sheds light on the particle engineering for balancing the energy density and cycle life of disordered‐rocksalt cathodes.</description><subject>Cations</subject><subject>Charge distribution</subject><subject>disordered rocksalt cathodes</subject><subject>Electrochemical analysis</subject><subject>Heterogeneity</subject><subject>heterogeneous charge distribution</subject><subject>Kinetics</subject><subject>Material properties</subject><subject>MATERIALS SCIENCE</subject><subject>Particle size</subject><subject>particle size engineering</subject><subject>Reaction kinetics</subject><subject>Redox reactions</subject><subject>size-dependent redox reactions</subject><subject>Spatial distribution</subject><subject>Stability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PAjEQhjdGExG9em70DPZjt9s9GvArYjR-JN6a0s5CEVtsi4onf4K_0V_iEgwePc1M8ryTmSfL9gnuEozpkTL1c5diSgguMN3IWoQT3mGYis11Tx63s50YJxiTsmR5K3MX7hVisiOVrBuhGxWS1VNAd_YDvj-_-jADZ8AldAvGv6NL66ABIlLOoN5YhRGgvo0p2OE8We-QdcvZBwMBDLr1-imqaUI9lcbeQNzNtmo1jbD3W9vZw-nJfe-8M7g-u-gdDzqaiZx2KsEMgMYFKznlWAsFTBXAdcmrITeVInlelGJY1UITDiVT3PASE8NqIWqqWTs7WO31zW8yaptAj7V3DnSSROSsUdFAhytoFvzLvLEgJ34eXHOXpLzIcc4poQ3VXVE6-BgD1HIW7LMKC0mwXIqXS_FyLb4JVKvAm53C4h9aHvdPr_6yP62xiGw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhang, Yuxin</creator><creator>Hu, Anyang</creator><creator>Liu, Jue</creator><creator>Xu, Zhengrui</creator><creator>Mu, Linqin</creator><creator>Sainio, Sami</creator><creator>Nordlund, Dennis</creator><creator>Li, Luxi</creator><creator>Sun, Cheng‐Jun</creator><creator>Xiao, Xianghui</creator><creator>Liu, Yijin</creator><creator>Lin, Feng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2830-4159</orcidid><orcidid>https://orcid.org/0000000228304159</orcidid></search><sort><creationdate>20220401</creationdate><title>Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes</title><author>Zhang, Yuxin ; Hu, Anyang ; Liu, Jue ; Xu, Zhengrui ; Mu, Linqin ; Sainio, Sami ; Nordlund, Dennis ; Li, Luxi ; Sun, Cheng‐Jun ; Xiao, Xianghui ; Liu, Yijin ; Lin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3842-983deec05376260c8ae3a5e6c769b6d9a144578b9f8c16e73a6d6701d3f88f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cations</topic><topic>Charge distribution</topic><topic>disordered rocksalt cathodes</topic><topic>Electrochemical analysis</topic><topic>Heterogeneity</topic><topic>heterogeneous charge distribution</topic><topic>Kinetics</topic><topic>Material properties</topic><topic>MATERIALS SCIENCE</topic><topic>Particle size</topic><topic>particle size engineering</topic><topic>Reaction kinetics</topic><topic>Redox reactions</topic><topic>size-dependent redox reactions</topic><topic>Spatial distribution</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuxin</creatorcontrib><creatorcontrib>Hu, Anyang</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Xu, Zhengrui</creatorcontrib><creatorcontrib>Mu, Linqin</creatorcontrib><creatorcontrib>Sainio, Sami</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Li, Luxi</creatorcontrib><creatorcontrib>Sun, Cheng‐Jun</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuxin</au><au>Hu, Anyang</au><au>Liu, Jue</au><au>Xu, Zhengrui</au><au>Mu, Linqin</au><au>Sainio, Sami</au><au>Nordlund, Dennis</au><au>Li, Luxi</au><au>Sun, Cheng‐Jun</au><au>Xiao, Xianghui</au><au>Liu, Yijin</au><au>Lin, Feng</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes</atitle><jtitle>Advanced functional materials</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>32</volume><issue>17</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Understanding how various redox activities evolve and distribute in disordered rocksalt oxides (DRX) can advance insights into manipulating materials properties for achieving stable, high‐energy batteries. Herein, the authors present how the reaction kinetics and spatial distribution of redox activities are governed by the particle size of DRX materials. The size‐dependent electrochemical performance is attributed to the distinct cationic and anionic reaction kinetics at different sizes, which can be tailored to achieve optimal capacity and stability. Overall, the local charged domains in DRX particles display random heterogeneity caused by the isotropic delithiation pathways. Owing to the kinetic limitation, the micron‐sized particles exhibit a holistic “core‐shell” charge distribution, whereas sub‐micron particles show more uniform redox reactions throughout the particles and ensembles. Sub‐micron DRX particles exhibit increasing anionic redox activities yet inferior cycling stability. In summary, engineering particle size can effectively modulate how cationic and anionic redox activities evolve and distribute in DRX materials. Controllable Li‐ion kinetics and depth‐dependent cationic/anionic redox reactions reveal the origin of size‐dependent electrochemical performance in disordered‐rocksalt materials. The work sheds light on the particle engineering for balancing the energy density and cycle life of disordered‐rocksalt cathodes.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202110502</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2830-4159</orcidid><orcidid>https://orcid.org/0000000228304159</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-04, Vol.32 (17), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1843301
source Wiley Online Library Journals Frontfile Complete
subjects Cations
Charge distribution
disordered rocksalt cathodes
Electrochemical analysis
Heterogeneity
heterogeneous charge distribution
Kinetics
Material properties
MATERIALS SCIENCE
Particle size
particle size engineering
Reaction kinetics
Redox reactions
size-dependent redox reactions
Spatial distribution
Stability
title Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Particle%20Size%E2%80%90Dependent%20Redox%20Kinetics%20and%20Charge%20Distribution%20in%20Disordered%20Rocksalt%20Cathodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Yuxin&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2022-04-01&rft.volume=32&rft.issue=17&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202110502&rft_dat=%3Cproquest_osti_%3E2654046212%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654046212&rft_id=info:pmid/&rfr_iscdi=true