In Situ Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals

Extracellular electron transfer (EET) is a critical form of microbial metabolism that enables respiration on a variety of inorganic substrates, including metal oxides. However, quantifying current generated by electroactive bacteria has been predominately limited to biofilms formed on electrodes. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2022-02, Vol.9 (3), p.n/a
Hauptverfasser: Graham, Austin J., Gibbs, Stephen L., Saez Cabezas, Camila A., Wang, Yongdan, Green, Allison M., Milliron, Delia J., Keitz, Benjamin K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title ChemElectroChem
container_volume 9
creator Graham, Austin J.
Gibbs, Stephen L.
Saez Cabezas, Camila A.
Wang, Yongdan
Green, Allison M.
Milliron, Delia J.
Keitz, Benjamin K.
description Extracellular electron transfer (EET) is a critical form of microbial metabolism that enables respiration on a variety of inorganic substrates, including metal oxides. However, quantifying current generated by electroactive bacteria has been predominately limited to biofilms formed on electrodes. To address this, we developed a platform for quantifying EET flux from cell suspensions using aqueous dispersions of infrared plasmonic tin‐doped indium oxide nanocrystals. Tracking the change in optical extinction during electron transfer enabled quantification of current generated by planktonic Shewanella oneidensis cultures. Using this method, we differentiated between starved and actively respiring cells, cells of varying genotype, and cells engineered to differentially express a key EET gene using an inducible genetic circuit. Overall, our results validate the utility of colloidally stable plasmonic metal oxide nanocrystals as quantitative biosensors in aqueous environments and contribute to a fundamental understanding of planktonic S. oneidensis electrophysiology using simple in situ spectroscopy. Electroactive bacteria in situ: Colloidally dispersed plasmonic metal oxide nanocrystals optically track extracellular electron transfer from planktonic Shewanella oneidensis cultures. The results indicate that plasmonic semiconductor nanocrystals are a reliable infrared sensing platform for probing metabolic activity of electroactive bacteria in cellular environments.
doi_str_mv 10.1002/celc.202101423
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1843073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629317022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3843-95ad602b511d7100b8f53b0df74cafe33cd98c5d2fe7ac7fbbcf5f6da01772a43</originalsourceid><addsrcrecordid>eNqFkM9PwyAUxxujicvc1TPRcyc_2tIezVJ1yXQatzOhFJSlgwk0bv-9LDXqzdN7wOf7fY9vklwiOEUQ4hshOzHFECOIMkxOkhFGVZHGc3H6pz9PJt5vIIQIwZyUxSjZzA141aEHy13QgnfgpecmaBX7oK0BVoF6HxyP_l3fcQfqTorg4svKceOVdGDttXkDzx33W2u0AI8yRJ_lXrcSPHFjhTv4eOMvkjMVi5x813GyvqtXs4d0sbyfz24XqSBlRtIq520BcZMj1NL4t6ZUOWlgq2gmuJKEiLYqRd5iJSkXVDWNULkqWg4RpZhnZJxcDb7WB8280EGKd2GNiYszFEdASiJ0PUA7Zz966QPb2N6ZuBfDBa4IohDjSE0HSjjrvZOK7ZzecndgCLJj7uyYO_vJPQqqQfCpO3n4h2azejH71X4BfpWHog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629317022</pqid></control><display><type>article</type><title>In Situ Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals</title><source>Access via Wiley Online Library</source><creator>Graham, Austin J. ; Gibbs, Stephen L. ; Saez Cabezas, Camila A. ; Wang, Yongdan ; Green, Allison M. ; Milliron, Delia J. ; Keitz, Benjamin K.</creator><creatorcontrib>Graham, Austin J. ; Gibbs, Stephen L. ; Saez Cabezas, Camila A. ; Wang, Yongdan ; Green, Allison M. ; Milliron, Delia J. ; Keitz, Benjamin K.</creatorcontrib><description>Extracellular electron transfer (EET) is a critical form of microbial metabolism that enables respiration on a variety of inorganic substrates, including metal oxides. However, quantifying current generated by electroactive bacteria has been predominately limited to biofilms formed on electrodes. To address this, we developed a platform for quantifying EET flux from cell suspensions using aqueous dispersions of infrared plasmonic tin‐doped indium oxide nanocrystals. Tracking the change in optical extinction during electron transfer enabled quantification of current generated by planktonic Shewanella oneidensis cultures. Using this method, we differentiated between starved and actively respiring cells, cells of varying genotype, and cells engineered to differentially express a key EET gene using an inducible genetic circuit. Overall, our results validate the utility of colloidally stable plasmonic metal oxide nanocrystals as quantitative biosensors in aqueous environments and contribute to a fundamental understanding of planktonic S. oneidensis electrophysiology using simple in situ spectroscopy. Electroactive bacteria in situ: Colloidally dispersed plasmonic metal oxide nanocrystals optically track extracellular electron transfer from planktonic Shewanella oneidensis cultures. The results indicate that plasmonic semiconductor nanocrystals are a reliable infrared sensing platform for probing metabolic activity of electroactive bacteria in cellular environments.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.202101423</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Aqueous environments ; Biosensors ; Circuits ; Colloidal semiconductor nanocrystals ; Electron transfer ; Electrons ; Electrophysiology ; Extracellular electron transfer ; Indium oxides ; Infrared tracking ; Localized surface plasmon resonance ; Metal oxides ; Microorganisms ; Nanocrystals ; Plasmonics ; Substrates</subject><ispartof>ChemElectroChem, 2022-02, Vol.9 (3), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3843-95ad602b511d7100b8f53b0df74cafe33cd98c5d2fe7ac7fbbcf5f6da01772a43</citedby><cites>FETCH-LOGICAL-c3843-95ad602b511d7100b8f53b0df74cafe33cd98c5d2fe7ac7fbbcf5f6da01772a43</cites><orcidid>0000-0003-2533-0957 ; 0000-0003-3314-0053 ; 0000-0001-8924-181X ; 0000-0002-8734-0096 ; 0000-0002-8737-451X ; 0000000333140053 ; 0000000287340096 ; 0000000325330957 ; 000000028737451X ; 000000018924181X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.202101423$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.202101423$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1843073$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, Austin J.</creatorcontrib><creatorcontrib>Gibbs, Stephen L.</creatorcontrib><creatorcontrib>Saez Cabezas, Camila A.</creatorcontrib><creatorcontrib>Wang, Yongdan</creatorcontrib><creatorcontrib>Green, Allison M.</creatorcontrib><creatorcontrib>Milliron, Delia J.</creatorcontrib><creatorcontrib>Keitz, Benjamin K.</creatorcontrib><title>In Situ Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals</title><title>ChemElectroChem</title><description>Extracellular electron transfer (EET) is a critical form of microbial metabolism that enables respiration on a variety of inorganic substrates, including metal oxides. However, quantifying current generated by electroactive bacteria has been predominately limited to biofilms formed on electrodes. To address this, we developed a platform for quantifying EET flux from cell suspensions using aqueous dispersions of infrared plasmonic tin‐doped indium oxide nanocrystals. Tracking the change in optical extinction during electron transfer enabled quantification of current generated by planktonic Shewanella oneidensis cultures. Using this method, we differentiated between starved and actively respiring cells, cells of varying genotype, and cells engineered to differentially express a key EET gene using an inducible genetic circuit. Overall, our results validate the utility of colloidally stable plasmonic metal oxide nanocrystals as quantitative biosensors in aqueous environments and contribute to a fundamental understanding of planktonic S. oneidensis electrophysiology using simple in situ spectroscopy. Electroactive bacteria in situ: Colloidally dispersed plasmonic metal oxide nanocrystals optically track extracellular electron transfer from planktonic Shewanella oneidensis cultures. The results indicate that plasmonic semiconductor nanocrystals are a reliable infrared sensing platform for probing metabolic activity of electroactive bacteria in cellular environments.</description><subject>Aqueous environments</subject><subject>Biosensors</subject><subject>Circuits</subject><subject>Colloidal semiconductor nanocrystals</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Electrophysiology</subject><subject>Extracellular electron transfer</subject><subject>Indium oxides</subject><subject>Infrared tracking</subject><subject>Localized surface plasmon resonance</subject><subject>Metal oxides</subject><subject>Microorganisms</subject><subject>Nanocrystals</subject><subject>Plasmonics</subject><subject>Substrates</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwyAUxxujicvc1TPRcyc_2tIezVJ1yXQatzOhFJSlgwk0bv-9LDXqzdN7wOf7fY9vklwiOEUQ4hshOzHFECOIMkxOkhFGVZHGc3H6pz9PJt5vIIQIwZyUxSjZzA141aEHy13QgnfgpecmaBX7oK0BVoF6HxyP_l3fcQfqTorg4svKceOVdGDttXkDzx33W2u0AI8yRJ_lXrcSPHFjhTv4eOMvkjMVi5x813GyvqtXs4d0sbyfz24XqSBlRtIq520BcZMj1NL4t6ZUOWlgq2gmuJKEiLYqRd5iJSkXVDWNULkqWg4RpZhnZJxcDb7WB8280EGKd2GNiYszFEdASiJ0PUA7Zz966QPb2N6ZuBfDBa4IohDjSE0HSjjrvZOK7ZzecndgCLJj7uyYO_vJPQqqQfCpO3n4h2azejH71X4BfpWHog</recordid><startdate>20220211</startdate><enddate>20220211</enddate><creator>Graham, Austin J.</creator><creator>Gibbs, Stephen L.</creator><creator>Saez Cabezas, Camila A.</creator><creator>Wang, Yongdan</creator><creator>Green, Allison M.</creator><creator>Milliron, Delia J.</creator><creator>Keitz, Benjamin K.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2533-0957</orcidid><orcidid>https://orcid.org/0000-0003-3314-0053</orcidid><orcidid>https://orcid.org/0000-0001-8924-181X</orcidid><orcidid>https://orcid.org/0000-0002-8734-0096</orcidid><orcidid>https://orcid.org/0000-0002-8737-451X</orcidid><orcidid>https://orcid.org/0000000333140053</orcidid><orcidid>https://orcid.org/0000000287340096</orcidid><orcidid>https://orcid.org/0000000325330957</orcidid><orcidid>https://orcid.org/000000028737451X</orcidid><orcidid>https://orcid.org/000000018924181X</orcidid></search><sort><creationdate>20220211</creationdate><title>In Situ Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals</title><author>Graham, Austin J. ; Gibbs, Stephen L. ; Saez Cabezas, Camila A. ; Wang, Yongdan ; Green, Allison M. ; Milliron, Delia J. ; Keitz, Benjamin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3843-95ad602b511d7100b8f53b0df74cafe33cd98c5d2fe7ac7fbbcf5f6da01772a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous environments</topic><topic>Biosensors</topic><topic>Circuits</topic><topic>Colloidal semiconductor nanocrystals</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Electrophysiology</topic><topic>Extracellular electron transfer</topic><topic>Indium oxides</topic><topic>Infrared tracking</topic><topic>Localized surface plasmon resonance</topic><topic>Metal oxides</topic><topic>Microorganisms</topic><topic>Nanocrystals</topic><topic>Plasmonics</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, Austin J.</creatorcontrib><creatorcontrib>Gibbs, Stephen L.</creatorcontrib><creatorcontrib>Saez Cabezas, Camila A.</creatorcontrib><creatorcontrib>Wang, Yongdan</creatorcontrib><creatorcontrib>Green, Allison M.</creatorcontrib><creatorcontrib>Milliron, Delia J.</creatorcontrib><creatorcontrib>Keitz, Benjamin K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, Austin J.</au><au>Gibbs, Stephen L.</au><au>Saez Cabezas, Camila A.</au><au>Wang, Yongdan</au><au>Green, Allison M.</au><au>Milliron, Delia J.</au><au>Keitz, Benjamin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals</atitle><jtitle>ChemElectroChem</jtitle><date>2022-02-11</date><risdate>2022</risdate><volume>9</volume><issue>3</issue><epage>n/a</epage><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Extracellular electron transfer (EET) is a critical form of microbial metabolism that enables respiration on a variety of inorganic substrates, including metal oxides. However, quantifying current generated by electroactive bacteria has been predominately limited to biofilms formed on electrodes. To address this, we developed a platform for quantifying EET flux from cell suspensions using aqueous dispersions of infrared plasmonic tin‐doped indium oxide nanocrystals. Tracking the change in optical extinction during electron transfer enabled quantification of current generated by planktonic Shewanella oneidensis cultures. Using this method, we differentiated between starved and actively respiring cells, cells of varying genotype, and cells engineered to differentially express a key EET gene using an inducible genetic circuit. Overall, our results validate the utility of colloidally stable plasmonic metal oxide nanocrystals as quantitative biosensors in aqueous environments and contribute to a fundamental understanding of planktonic S. oneidensis electrophysiology using simple in situ spectroscopy. Electroactive bacteria in situ: Colloidally dispersed plasmonic metal oxide nanocrystals optically track extracellular electron transfer from planktonic Shewanella oneidensis cultures. The results indicate that plasmonic semiconductor nanocrystals are a reliable infrared sensing platform for probing metabolic activity of electroactive bacteria in cellular environments.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.202101423</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2533-0957</orcidid><orcidid>https://orcid.org/0000-0003-3314-0053</orcidid><orcidid>https://orcid.org/0000-0001-8924-181X</orcidid><orcidid>https://orcid.org/0000-0002-8734-0096</orcidid><orcidid>https://orcid.org/0000-0002-8737-451X</orcidid><orcidid>https://orcid.org/0000000333140053</orcidid><orcidid>https://orcid.org/0000000287340096</orcidid><orcidid>https://orcid.org/0000000325330957</orcidid><orcidid>https://orcid.org/000000028737451X</orcidid><orcidid>https://orcid.org/000000018924181X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2022-02, Vol.9 (3), p.n/a
issn 2196-0216
2196-0216
language eng
recordid cdi_osti_scitechconnect_1843073
source Access via Wiley Online Library
subjects Aqueous environments
Biosensors
Circuits
Colloidal semiconductor nanocrystals
Electron transfer
Electrons
Electrophysiology
Extracellular electron transfer
Indium oxides
Infrared tracking
Localized surface plasmon resonance
Metal oxides
Microorganisms
Nanocrystals
Plasmonics
Substrates
title In Situ Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A36%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Optical%20Quantification%20of%20Extracellular%20Electron%20Transfer%20Using%20Plasmonic%20Metal%20Oxide%20Nanocrystals&rft.jtitle=ChemElectroChem&rft.au=Graham,%20Austin%20J.&rft.date=2022-02-11&rft.volume=9&rft.issue=3&rft.epage=n/a&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.202101423&rft_dat=%3Cproquest_osti_%3E2629317022%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629317022&rft_id=info:pmid/&rfr_iscdi=true