Analysis of the dependence of critical electric field on semiconductor bandgap
Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field ( E crit ) at which the...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2022-02, Vol.37 (4), p.849-865 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 865 |
---|---|
container_issue | 4 |
container_start_page | 849 |
container_title | Journal of materials research |
container_volume | 37 |
creator | Slobodyan, Oleksiy Flicker, Jack Dickerson, Jeramy Shoemaker, Jonah Binder, Andrew Smith, Trevor Goodnick, Stephen Kaplar, Robert Hollis, Mark |
description | Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (
E
crit
) at which the material breaks down and bandgap (
E
g
)
.
The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of
E
crit
on
E
g
cover a surprisingly wide range in the literature. Moreover,
E
crit
is a function of material doping. Further, discrepancies arise in
E
crit
values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence
E
crit
∝
E
g
1.83
best fits the most reliable and newest data for both direct and indirect semiconductors.
Graphical abstract |
doi_str_mv | 10.1557/s43578-021-00465-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1843053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-a3143b414843d6268e62c30ba02fb0bd078597f7bf9d7598e4c71c9d9856709c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wsWAfGr9heVhUvqYINrK3EdlpXaVJsd9G_xyVI7FiNNDr3auYgdEPgngghHxJnQqoKKKkAeC0qeoJmFDivBKP1KZqBUryimvBzdJHSBoAIkHyG3uZD0x9SSHjscF577PzOD84P1h83NoYcbNNj33ubY7C4C753eBxw8ttgx8HtbR4jbpvBrZrdFTrrmj756995iT6fHj8WL9Xy_fl1MV9WlmnIVcMIZy0nXHHmalorX1PLoG2Adi20DqQSWnay7bSTQivPrSRWO61ELUFbdolup94x5WCSDdnbdblmKFcaUlpBsALdTdAujl97n7LZjPtY_k2GSlBUAa1loehE2TimFH1ndjFsm3gwBMxRrpnkmiLX_Mg1tITYFEoFHlY-_lX_k_oG5Vt7Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280267</pqid></control><display><type>article</type><title>Analysis of the dependence of critical electric field on semiconductor bandgap</title><source>Springer Online Journals Complete</source><creator>Slobodyan, Oleksiy ; Flicker, Jack ; Dickerson, Jeramy ; Shoemaker, Jonah ; Binder, Andrew ; Smith, Trevor ; Goodnick, Stephen ; Kaplar, Robert ; Hollis, Mark</creator><creatorcontrib>Slobodyan, Oleksiy ; Flicker, Jack ; Dickerson, Jeramy ; Shoemaker, Jonah ; Binder, Andrew ; Smith, Trevor ; Goodnick, Stephen ; Kaplar, Robert ; Hollis, Mark</creatorcontrib><description>Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (
E
crit
) at which the material breaks down and bandgap (
E
g
)
.
The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of
E
crit
on
E
g
cover a surprisingly wide range in the literature. Moreover,
E
crit
is a function of material doping. Further, discrepancies arise in
E
crit
values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence
E
crit
∝
E
g
1.83
best fits the most reliable and newest data for both direct and indirect semiconductors.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00465-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Doping ; Electric fields ; Electronic devices ; Energy gap ; Inorganic Chemistry ; Invited Feature Paper-Review ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology</subject><ispartof>Journal of materials research, 2022-02, Vol.37 (4), p.849-865</ispartof><rights>National Technology & Engineering Solutions of Sandia, LLC 2022</rights><rights>National Technology & Engineering Solutions of Sandia, LLC 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-a3143b414843d6268e62c30ba02fb0bd078597f7bf9d7598e4c71c9d9856709c3</citedby><cites>FETCH-LOGICAL-c390t-a3143b414843d6268e62c30ba02fb0bd078597f7bf9d7598e4c71c9d9856709c3</cites><orcidid>0000-0002-9882-407X ; 000000029882407X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-021-00465-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-021-00465-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1843053$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Slobodyan, Oleksiy</creatorcontrib><creatorcontrib>Flicker, Jack</creatorcontrib><creatorcontrib>Dickerson, Jeramy</creatorcontrib><creatorcontrib>Shoemaker, Jonah</creatorcontrib><creatorcontrib>Binder, Andrew</creatorcontrib><creatorcontrib>Smith, Trevor</creatorcontrib><creatorcontrib>Goodnick, Stephen</creatorcontrib><creatorcontrib>Kaplar, Robert</creatorcontrib><creatorcontrib>Hollis, Mark</creatorcontrib><title>Analysis of the dependence of critical electric field on semiconductor bandgap</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (
E
crit
) at which the material breaks down and bandgap (
E
g
)
.
The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of
E
crit
on
E
g
cover a surprisingly wide range in the literature. Moreover,
E
crit
is a function of material doping. Further, discrepancies arise in
E
crit
values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence
E
crit
∝
E
g
1.83
best fits the most reliable and newest data for both direct and indirect semiconductors.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Doping</subject><subject>Electric fields</subject><subject>Electronic devices</subject><subject>Energy gap</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Paper-Review</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEuXxA6wsWAfGr9heVhUvqYINrK3EdlpXaVJsd9G_xyVI7FiNNDr3auYgdEPgngghHxJnQqoKKKkAeC0qeoJmFDivBKP1KZqBUryimvBzdJHSBoAIkHyG3uZD0x9SSHjscF577PzOD84P1h83NoYcbNNj33ubY7C4C753eBxw8ttgx8HtbR4jbpvBrZrdFTrrmj756995iT6fHj8WL9Xy_fl1MV9WlmnIVcMIZy0nXHHmalorX1PLoG2Adi20DqQSWnay7bSTQivPrSRWO61ELUFbdolup94x5WCSDdnbdblmKFcaUlpBsALdTdAujl97n7LZjPtY_k2GSlBUAa1loehE2TimFH1ndjFsm3gwBMxRrpnkmiLX_Mg1tITYFEoFHlY-_lX_k_oG5Vt7Sg</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Slobodyan, Oleksiy</creator><creator>Flicker, Jack</creator><creator>Dickerson, Jeramy</creator><creator>Shoemaker, Jonah</creator><creator>Binder, Andrew</creator><creator>Smith, Trevor</creator><creator>Goodnick, Stephen</creator><creator>Kaplar, Robert</creator><creator>Hollis, Mark</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Cambridge University Press (CUP)</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9882-407X</orcidid><orcidid>https://orcid.org/000000029882407X</orcidid></search><sort><creationdate>20220228</creationdate><title>Analysis of the dependence of critical electric field on semiconductor bandgap</title><author>Slobodyan, Oleksiy ; Flicker, Jack ; Dickerson, Jeramy ; Shoemaker, Jonah ; Binder, Andrew ; Smith, Trevor ; Goodnick, Stephen ; Kaplar, Robert ; Hollis, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-a3143b414843d6268e62c30ba02fb0bd078597f7bf9d7598e4c71c9d9856709c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Doping</topic><topic>Electric fields</topic><topic>Electronic devices</topic><topic>Energy gap</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Paper-Review</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slobodyan, Oleksiy</creatorcontrib><creatorcontrib>Flicker, Jack</creatorcontrib><creatorcontrib>Dickerson, Jeramy</creatorcontrib><creatorcontrib>Shoemaker, Jonah</creatorcontrib><creatorcontrib>Binder, Andrew</creatorcontrib><creatorcontrib>Smith, Trevor</creatorcontrib><creatorcontrib>Goodnick, Stephen</creatorcontrib><creatorcontrib>Kaplar, Robert</creatorcontrib><creatorcontrib>Hollis, Mark</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slobodyan, Oleksiy</au><au>Flicker, Jack</au><au>Dickerson, Jeramy</au><au>Shoemaker, Jonah</au><au>Binder, Andrew</au><au>Smith, Trevor</au><au>Goodnick, Stephen</au><au>Kaplar, Robert</au><au>Hollis, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the dependence of critical electric field on semiconductor bandgap</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-02-28</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>849</spage><epage>865</epage><pages>849-865</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (
E
crit
) at which the material breaks down and bandgap (
E
g
)
.
The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of
E
crit
on
E
g
cover a surprisingly wide range in the literature. Moreover,
E
crit
is a function of material doping. Further, discrepancies arise in
E
crit
values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence
E
crit
∝
E
g
1.83
best fits the most reliable and newest data for both direct and indirect semiconductors.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00465-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9882-407X</orcidid><orcidid>https://orcid.org/000000029882407X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2022-02, Vol.37 (4), p.849-865 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_osti_scitechconnect_1843053 |
source | Springer Online Journals Complete |
subjects | Applied and Technical Physics Biomaterials Chemistry and Materials Science Doping Electric fields Electronic devices Energy gap Inorganic Chemistry Invited Feature Paper-Review Materials Engineering Materials research Materials Science Nanotechnology |
title | Analysis of the dependence of critical electric field on semiconductor bandgap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20dependence%20of%20critical%20electric%20field%20on%20semiconductor%20bandgap&rft.jtitle=Journal%20of%20materials%20research&rft.au=Slobodyan,%20Oleksiy&rft.date=2022-02-28&rft.volume=37&rft.issue=4&rft.spage=849&rft.epage=865&rft.pages=849-865&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00465-2&rft_dat=%3Cproquest_osti_%3E2708280267%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280267&rft_id=info:pmid/&rfr_iscdi=true |