Analysis of the dependence of critical electric field on semiconductor bandgap

Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field ( E crit ) at which the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2022-02, Vol.37 (4), p.849-865
Hauptverfasser: Slobodyan, Oleksiy, Flicker, Jack, Dickerson, Jeramy, Shoemaker, Jonah, Binder, Andrew, Smith, Trevor, Goodnick, Stephen, Kaplar, Robert, Hollis, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue 4
container_start_page 849
container_title Journal of materials research
container_volume 37
creator Slobodyan, Oleksiy
Flicker, Jack
Dickerson, Jeramy
Shoemaker, Jonah
Binder, Andrew
Smith, Trevor
Goodnick, Stephen
Kaplar, Robert
Hollis, Mark
description Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field ( E crit ) at which the material breaks down and bandgap ( E g ) . The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of E crit on E g cover a surprisingly wide range in the literature. Moreover, E crit is a function of material doping. Further, discrepancies arise in E crit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence E crit ∝ E g 1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract
doi_str_mv 10.1557/s43578-021-00465-2
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1843053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-a3143b414843d6268e62c30ba02fb0bd078597f7bf9d7598e4c71c9d9856709c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wsWAfGr9heVhUvqYINrK3EdlpXaVJsd9G_xyVI7FiNNDr3auYgdEPgngghHxJnQqoKKKkAeC0qeoJmFDivBKP1KZqBUryimvBzdJHSBoAIkHyG3uZD0x9SSHjscF577PzOD84P1h83NoYcbNNj33ubY7C4C753eBxw8ttgx8HtbR4jbpvBrZrdFTrrmj756995iT6fHj8WL9Xy_fl1MV9WlmnIVcMIZy0nXHHmalorX1PLoG2Adi20DqQSWnay7bSTQivPrSRWO61ELUFbdolup94x5WCSDdnbdblmKFcaUlpBsALdTdAujl97n7LZjPtY_k2GSlBUAa1loehE2TimFH1ndjFsm3gwBMxRrpnkmiLX_Mg1tITYFEoFHlY-_lX_k_oG5Vt7Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280267</pqid></control><display><type>article</type><title>Analysis of the dependence of critical electric field on semiconductor bandgap</title><source>Springer Online Journals Complete</source><creator>Slobodyan, Oleksiy ; Flicker, Jack ; Dickerson, Jeramy ; Shoemaker, Jonah ; Binder, Andrew ; Smith, Trevor ; Goodnick, Stephen ; Kaplar, Robert ; Hollis, Mark</creator><creatorcontrib>Slobodyan, Oleksiy ; Flicker, Jack ; Dickerson, Jeramy ; Shoemaker, Jonah ; Binder, Andrew ; Smith, Trevor ; Goodnick, Stephen ; Kaplar, Robert ; Hollis, Mark</creatorcontrib><description>Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field ( E crit ) at which the material breaks down and bandgap ( E g ) . The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of E crit on E g cover a surprisingly wide range in the literature. Moreover, E crit is a function of material doping. Further, discrepancies arise in E crit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence E crit ∝ E g 1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00465-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Doping ; Electric fields ; Electronic devices ; Energy gap ; Inorganic Chemistry ; Invited Feature Paper-Review ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology</subject><ispartof>Journal of materials research, 2022-02, Vol.37 (4), p.849-865</ispartof><rights>National Technology &amp; Engineering Solutions of Sandia, LLC 2022</rights><rights>National Technology &amp; Engineering Solutions of Sandia, LLC 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-a3143b414843d6268e62c30ba02fb0bd078597f7bf9d7598e4c71c9d9856709c3</citedby><cites>FETCH-LOGICAL-c390t-a3143b414843d6268e62c30ba02fb0bd078597f7bf9d7598e4c71c9d9856709c3</cites><orcidid>0000-0002-9882-407X ; 000000029882407X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-021-00465-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-021-00465-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1843053$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Slobodyan, Oleksiy</creatorcontrib><creatorcontrib>Flicker, Jack</creatorcontrib><creatorcontrib>Dickerson, Jeramy</creatorcontrib><creatorcontrib>Shoemaker, Jonah</creatorcontrib><creatorcontrib>Binder, Andrew</creatorcontrib><creatorcontrib>Smith, Trevor</creatorcontrib><creatorcontrib>Goodnick, Stephen</creatorcontrib><creatorcontrib>Kaplar, Robert</creatorcontrib><creatorcontrib>Hollis, Mark</creatorcontrib><title>Analysis of the dependence of critical electric field on semiconductor bandgap</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field ( E crit ) at which the material breaks down and bandgap ( E g ) . The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of E crit on E g cover a surprisingly wide range in the literature. Moreover, E crit is a function of material doping. Further, discrepancies arise in E crit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence E crit ∝ E g 1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Doping</subject><subject>Electric fields</subject><subject>Electronic devices</subject><subject>Energy gap</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Paper-Review</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEuXxA6wsWAfGr9heVhUvqYINrK3EdlpXaVJsd9G_xyVI7FiNNDr3auYgdEPgngghHxJnQqoKKKkAeC0qeoJmFDivBKP1KZqBUryimvBzdJHSBoAIkHyG3uZD0x9SSHjscF577PzOD84P1h83NoYcbNNj33ubY7C4C753eBxw8ttgx8HtbR4jbpvBrZrdFTrrmj756995iT6fHj8WL9Xy_fl1MV9WlmnIVcMIZy0nXHHmalorX1PLoG2Adi20DqQSWnay7bSTQivPrSRWO61ELUFbdolup94x5WCSDdnbdblmKFcaUlpBsALdTdAujl97n7LZjPtY_k2GSlBUAa1loehE2TimFH1ndjFsm3gwBMxRrpnkmiLX_Mg1tITYFEoFHlY-_lX_k_oG5Vt7Sg</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Slobodyan, Oleksiy</creator><creator>Flicker, Jack</creator><creator>Dickerson, Jeramy</creator><creator>Shoemaker, Jonah</creator><creator>Binder, Andrew</creator><creator>Smith, Trevor</creator><creator>Goodnick, Stephen</creator><creator>Kaplar, Robert</creator><creator>Hollis, Mark</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Cambridge University Press (CUP)</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9882-407X</orcidid><orcidid>https://orcid.org/000000029882407X</orcidid></search><sort><creationdate>20220228</creationdate><title>Analysis of the dependence of critical electric field on semiconductor bandgap</title><author>Slobodyan, Oleksiy ; Flicker, Jack ; Dickerson, Jeramy ; Shoemaker, Jonah ; Binder, Andrew ; Smith, Trevor ; Goodnick, Stephen ; Kaplar, Robert ; Hollis, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-a3143b414843d6268e62c30ba02fb0bd078597f7bf9d7598e4c71c9d9856709c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Doping</topic><topic>Electric fields</topic><topic>Electronic devices</topic><topic>Energy gap</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Paper-Review</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slobodyan, Oleksiy</creatorcontrib><creatorcontrib>Flicker, Jack</creatorcontrib><creatorcontrib>Dickerson, Jeramy</creatorcontrib><creatorcontrib>Shoemaker, Jonah</creatorcontrib><creatorcontrib>Binder, Andrew</creatorcontrib><creatorcontrib>Smith, Trevor</creatorcontrib><creatorcontrib>Goodnick, Stephen</creatorcontrib><creatorcontrib>Kaplar, Robert</creatorcontrib><creatorcontrib>Hollis, Mark</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slobodyan, Oleksiy</au><au>Flicker, Jack</au><au>Dickerson, Jeramy</au><au>Shoemaker, Jonah</au><au>Binder, Andrew</au><au>Smith, Trevor</au><au>Goodnick, Stephen</au><au>Kaplar, Robert</au><au>Hollis, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the dependence of critical electric field on semiconductor bandgap</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-02-28</date><risdate>2022</risdate><volume>37</volume><issue>4</issue><spage>849</spage><epage>865</epage><pages>849-865</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field ( E crit ) at which the material breaks down and bandgap ( E g ) . The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of E crit on E g cover a surprisingly wide range in the literature. Moreover, E crit is a function of material doping. Further, discrepancies arise in E crit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence E crit ∝ E g 1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00465-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9882-407X</orcidid><orcidid>https://orcid.org/000000029882407X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2022-02, Vol.37 (4), p.849-865
issn 0884-2914
2044-5326
language eng
recordid cdi_osti_scitechconnect_1843053
source Springer Online Journals Complete
subjects Applied and Technical Physics
Biomaterials
Chemistry and Materials Science
Doping
Electric fields
Electronic devices
Energy gap
Inorganic Chemistry
Invited Feature Paper-Review
Materials Engineering
Materials research
Materials Science
Nanotechnology
title Analysis of the dependence of critical electric field on semiconductor bandgap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20dependence%20of%20critical%20electric%20field%20on%20semiconductor%20bandgap&rft.jtitle=Journal%20of%20materials%20research&rft.au=Slobodyan,%20Oleksiy&rft.date=2022-02-28&rft.volume=37&rft.issue=4&rft.spage=849&rft.epage=865&rft.pages=849-865&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00465-2&rft_dat=%3Cproquest_osti_%3E2708280267%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280267&rft_id=info:pmid/&rfr_iscdi=true