Magnetic ordering through itinerant ferromagnetism in a metal–organic framework

Materials that combine magnetic order with other desirable physical attributes could find transformative applications in spintronics, quantum sensing, low-density magnets and gas separations. Among potential multifunctional magnetic materials, metal–organic frameworks, in particular, bear structures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-06, Vol.13 (6), p.594-598
Hauptverfasser: Park, Jesse G., Collins, Brianna A., Darago, Lucy E., Runčevski, Tomče, Ziebel, Michael E., Aubrey, Michael L., Jiang, Henry Z. H., Velasquez, Ever, Green, Mark A., Goodpaster, Jason D., Long, Jeffrey R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 6
container_start_page 594
container_title Nature chemistry
container_volume 13
creator Park, Jesse G.
Collins, Brianna A.
Darago, Lucy E.
Runčevski, Tomče
Ziebel, Michael E.
Aubrey, Michael L.
Jiang, Henry Z. H.
Velasquez, Ever
Green, Mark A.
Goodpaster, Jason D.
Long, Jeffrey R.
description Materials that combine magnetic order with other desirable physical attributes could find transformative applications in spintronics, quantum sensing, low-density magnets and gas separations. Among potential multifunctional magnetic materials, metal–organic frameworks, in particular, bear structures that offer intrinsic porosity, vast chemical and structural programmability, and the tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating a strong magnetic exchange. Here we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at T C  = 225 K in a mixed-valence chromium( ii/iii) triazolate compound, which represents the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism proceeds through a double-exchange mechanism, which results in a barrierless charge transport below the Curie temperature and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. The development of metal–organic magnets that combine tunable magnetic properties with other desirable physical properties remains challenging despite numerous potential applications. Now, a mixed-valent chromium–triazolate material has been prepared that exhibits itinerant ferromagnetism with a magnetic ordering temperature of 225 K, a high conductivity and large negative magnetoresistance (23%).
doi_str_mv 10.1038/s41557-021-00666-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1843005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514604212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-6ec839090fa745643a39fe38d13a33eed64bc472dbc10a933b8829736b7168143</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0Eohd4ARYogk03AdtjO_ESVdykoqoSrC3HmZzjcmIfbEeIHe_AG_ZJ8CGllViwmll8_z8afYQ8Y_QVo9C_zoJJ2bWUs5ZSpVSrHpBj1knZChD64d0O9Iic5HxdIQlMPSZHAL3UoNkxufpkNwGLd01MIyYfNk3Zprhsto0vPmCyoTQTphTnFcxz40NjmxmL3d38_BXTxoYan5Kd8XtMX5-QR5PdZXx6O0_Jl3dvP59_aC8u3388f3PROil0aRW6HjTVdLKdkEqABT0h9COrGyCOSgxOdHwcHKNWAwx9z3UHauiY6pmAU_Ji7Y25eJOdL-i2LoaArhjWC6BUVuhshfYpflswFzP77HC3swHjkg2XTCgqOOMVffkPeh2XFOoLlQLRU6754SpfKZdizgkns09-tumHYdQcrJjViqlWzB8rRtXQ89vqZZhxvIv81VABWIG8PyjAdH_7P7W_ARhnl2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534802924</pqid></control><display><type>article</type><title>Magnetic ordering through itinerant ferromagnetism in a metal–organic framework</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Park, Jesse G. ; Collins, Brianna A. ; Darago, Lucy E. ; Runčevski, Tomče ; Ziebel, Michael E. ; Aubrey, Michael L. ; Jiang, Henry Z. H. ; Velasquez, Ever ; Green, Mark A. ; Goodpaster, Jason D. ; Long, Jeffrey R.</creator><creatorcontrib>Park, Jesse G. ; Collins, Brianna A. ; Darago, Lucy E. ; Runčevski, Tomče ; Ziebel, Michael E. ; Aubrey, Michael L. ; Jiang, Henry Z. H. ; Velasquez, Ever ; Green, Mark A. ; Goodpaster, Jason D. ; Long, Jeffrey R. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Materials that combine magnetic order with other desirable physical attributes could find transformative applications in spintronics, quantum sensing, low-density magnets and gas separations. Among potential multifunctional magnetic materials, metal–organic frameworks, in particular, bear structures that offer intrinsic porosity, vast chemical and structural programmability, and the tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating a strong magnetic exchange. Here we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at T C  = 225 K in a mixed-valence chromium( ii/iii) triazolate compound, which represents the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism proceeds through a double-exchange mechanism, which results in a barrierless charge transport below the Curie temperature and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. The development of metal–organic magnets that combine tunable magnetic properties with other desirable physical properties remains challenging despite numerous potential applications. Now, a mixed-valent chromium–triazolate material has been prepared that exhibits itinerant ferromagnetism with a magnetic ordering temperature of 225 K, a high conductivity and large negative magnetoresistance (23%).</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-021-00666-6</identifier><identifier>PMID: 33859391</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/263 ; 639/638/298/920 ; 639/638/298/921 ; 639/638/911 ; Analytical Chemistry ; Biochemistry ; Charge transport ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chromium ; Chromium compounds ; coordination chemistry ; Curie temperature ; Electronic properties ; Exchanging ; Ferromagnetism ; Inorganic Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Low temperature ; Magnetic materials ; Magnetic properties ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Magnets ; Metal-organic frameworks ; Metals ; Organic Chemistry ; Physical Chemistry ; Physical properties ; Porosity ; Spintronics ; Temperature</subject><ispartof>Nature chemistry, 2021-06, Vol.13 (6), p.594-598</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-6ec839090fa745643a39fe38d13a33eed64bc472dbc10a933b8829736b7168143</citedby><cites>FETCH-LOGICAL-c549t-6ec839090fa745643a39fe38d13a33eed64bc472dbc10a933b8829736b7168143</cites><orcidid>0000-0001-6461-4501 ; 0000-0002-7886-6205 ; 0000-0003-1857-8292 ; 0000-0003-3947-9170 ; 0000-0002-5324-1321 ; 0000000318578292 ; 0000000278866205 ; 0000000339479170 ; 0000000253241321 ; 0000000164614501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33859391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1843005$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jesse G.</creatorcontrib><creatorcontrib>Collins, Brianna A.</creatorcontrib><creatorcontrib>Darago, Lucy E.</creatorcontrib><creatorcontrib>Runčevski, Tomče</creatorcontrib><creatorcontrib>Ziebel, Michael E.</creatorcontrib><creatorcontrib>Aubrey, Michael L.</creatorcontrib><creatorcontrib>Jiang, Henry Z. H.</creatorcontrib><creatorcontrib>Velasquez, Ever</creatorcontrib><creatorcontrib>Green, Mark A.</creatorcontrib><creatorcontrib>Goodpaster, Jason D.</creatorcontrib><creatorcontrib>Long, Jeffrey R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Magnetic ordering through itinerant ferromagnetism in a metal–organic framework</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Materials that combine magnetic order with other desirable physical attributes could find transformative applications in spintronics, quantum sensing, low-density magnets and gas separations. Among potential multifunctional magnetic materials, metal–organic frameworks, in particular, bear structures that offer intrinsic porosity, vast chemical and structural programmability, and the tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating a strong magnetic exchange. Here we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at T C  = 225 K in a mixed-valence chromium( ii/iii) triazolate compound, which represents the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism proceeds through a double-exchange mechanism, which results in a barrierless charge transport below the Curie temperature and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. The development of metal–organic magnets that combine tunable magnetic properties with other desirable physical properties remains challenging despite numerous potential applications. Now, a mixed-valent chromium–triazolate material has been prepared that exhibits itinerant ferromagnetism with a magnetic ordering temperature of 225 K, a high conductivity and large negative magnetoresistance (23%).</description><subject>639/638/263</subject><subject>639/638/298/920</subject><subject>639/638/298/921</subject><subject>639/638/911</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Charge transport</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chromium</subject><subject>Chromium compounds</subject><subject>coordination chemistry</subject><subject>Curie temperature</subject><subject>Electronic properties</subject><subject>Exchanging</subject><subject>Ferromagnetism</subject><subject>Inorganic Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Low temperature</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Magnets</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Physical properties</subject><subject>Porosity</subject><subject>Spintronics</subject><subject>Temperature</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1TAQhi0Eohd4ARYogk03AdtjO_ESVdykoqoSrC3HmZzjcmIfbEeIHe_AG_ZJ8CGllViwmll8_z8afYQ8Y_QVo9C_zoJJ2bWUs5ZSpVSrHpBj1knZChD64d0O9Iic5HxdIQlMPSZHAL3UoNkxufpkNwGLd01MIyYfNk3Zprhsto0vPmCyoTQTphTnFcxz40NjmxmL3d38_BXTxoYan5Kd8XtMX5-QR5PdZXx6O0_Jl3dvP59_aC8u3388f3PROil0aRW6HjTVdLKdkEqABT0h9COrGyCOSgxOdHwcHKNWAwx9z3UHauiY6pmAU_Ji7Y25eJOdL-i2LoaArhjWC6BUVuhshfYpflswFzP77HC3swHjkg2XTCgqOOMVffkPeh2XFOoLlQLRU6754SpfKZdizgkns09-tumHYdQcrJjViqlWzB8rRtXQ89vqZZhxvIv81VABWIG8PyjAdH_7P7W_ARhnl2Q</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Park, Jesse G.</creator><creator>Collins, Brianna A.</creator><creator>Darago, Lucy E.</creator><creator>Runčevski, Tomče</creator><creator>Ziebel, Michael E.</creator><creator>Aubrey, Michael L.</creator><creator>Jiang, Henry Z. H.</creator><creator>Velasquez, Ever</creator><creator>Green, Mark A.</creator><creator>Goodpaster, Jason D.</creator><creator>Long, Jeffrey R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6461-4501</orcidid><orcidid>https://orcid.org/0000-0002-7886-6205</orcidid><orcidid>https://orcid.org/0000-0003-1857-8292</orcidid><orcidid>https://orcid.org/0000-0003-3947-9170</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000000318578292</orcidid><orcidid>https://orcid.org/0000000278866205</orcidid><orcidid>https://orcid.org/0000000339479170</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000164614501</orcidid></search><sort><creationdate>20210601</creationdate><title>Magnetic ordering through itinerant ferromagnetism in a metal–organic framework</title><author>Park, Jesse G. ; Collins, Brianna A. ; Darago, Lucy E. ; Runčevski, Tomče ; Ziebel, Michael E. ; Aubrey, Michael L. ; Jiang, Henry Z. H. ; Velasquez, Ever ; Green, Mark A. ; Goodpaster, Jason D. ; Long, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-6ec839090fa745643a39fe38d13a33eed64bc472dbc10a933b8829736b7168143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/263</topic><topic>639/638/298/920</topic><topic>639/638/298/921</topic><topic>639/638/911</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Charge transport</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chromium</topic><topic>Chromium compounds</topic><topic>coordination chemistry</topic><topic>Curie temperature</topic><topic>Electronic properties</topic><topic>Exchanging</topic><topic>Ferromagnetism</topic><topic>Inorganic Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Low temperature</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Magnets</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Physical properties</topic><topic>Porosity</topic><topic>Spintronics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jesse G.</creatorcontrib><creatorcontrib>Collins, Brianna A.</creatorcontrib><creatorcontrib>Darago, Lucy E.</creatorcontrib><creatorcontrib>Runčevski, Tomče</creatorcontrib><creatorcontrib>Ziebel, Michael E.</creatorcontrib><creatorcontrib>Aubrey, Michael L.</creatorcontrib><creatorcontrib>Jiang, Henry Z. H.</creatorcontrib><creatorcontrib>Velasquez, Ever</creatorcontrib><creatorcontrib>Green, Mark A.</creatorcontrib><creatorcontrib>Goodpaster, Jason D.</creatorcontrib><creatorcontrib>Long, Jeffrey R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jesse G.</au><au>Collins, Brianna A.</au><au>Darago, Lucy E.</au><au>Runčevski, Tomče</au><au>Ziebel, Michael E.</au><au>Aubrey, Michael L.</au><au>Jiang, Henry Z. H.</au><au>Velasquez, Ever</au><au>Green, Mark A.</au><au>Goodpaster, Jason D.</au><au>Long, Jeffrey R.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic ordering through itinerant ferromagnetism in a metal–organic framework</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>594</spage><epage>598</epage><pages>594-598</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Materials that combine magnetic order with other desirable physical attributes could find transformative applications in spintronics, quantum sensing, low-density magnets and gas separations. Among potential multifunctional magnetic materials, metal–organic frameworks, in particular, bear structures that offer intrinsic porosity, vast chemical and structural programmability, and the tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating a strong magnetic exchange. Here we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at T C  = 225 K in a mixed-valence chromium( ii/iii) triazolate compound, which represents the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism proceeds through a double-exchange mechanism, which results in a barrierless charge transport below the Curie temperature and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. The development of metal–organic magnets that combine tunable magnetic properties with other desirable physical properties remains challenging despite numerous potential applications. Now, a mixed-valent chromium–triazolate material has been prepared that exhibits itinerant ferromagnetism with a magnetic ordering temperature of 225 K, a high conductivity and large negative magnetoresistance (23%).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33859391</pmid><doi>10.1038/s41557-021-00666-6</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6461-4501</orcidid><orcidid>https://orcid.org/0000-0002-7886-6205</orcidid><orcidid>https://orcid.org/0000-0003-1857-8292</orcidid><orcidid>https://orcid.org/0000-0003-3947-9170</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000000318578292</orcidid><orcidid>https://orcid.org/0000000278866205</orcidid><orcidid>https://orcid.org/0000000339479170</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000164614501</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2021-06, Vol.13 (6), p.594-598
issn 1755-4330
1755-4349
language eng
recordid cdi_osti_scitechconnect_1843005
source Nature Journals Online; Alma/SFX Local Collection
subjects 639/638/263
639/638/298/920
639/638/298/921
639/638/911
Analytical Chemistry
Biochemistry
Charge transport
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chromium
Chromium compounds
coordination chemistry
Curie temperature
Electronic properties
Exchanging
Ferromagnetism
Inorganic Chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Low temperature
Magnetic materials
Magnetic properties
Magnetism
Magnetoresistance
Magnetoresistivity
Magnets
Metal-organic frameworks
Metals
Organic Chemistry
Physical Chemistry
Physical properties
Porosity
Spintronics
Temperature
title Magnetic ordering through itinerant ferromagnetism in a metal–organic framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20ordering%20through%20itinerant%20ferromagnetism%20in%20a%20metal%E2%80%93organic%20framework&rft.jtitle=Nature%20chemistry&rft.au=Park,%20Jesse%20G.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-06-01&rft.volume=13&rft.issue=6&rft.spage=594&rft.epage=598&rft.pages=594-598&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-021-00666-6&rft_dat=%3Cproquest_osti_%3E2514604212%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534802924&rft_id=info:pmid/33859391&rfr_iscdi=true