Investigation of Coupled Processes in Fractures and the Bordering Matrix via a Micro‐Continuum Reactive Transport Model

In multi‐mineral fractured rocks, the altered porous layer on the fracture surface resulting from preferential dissolution of the fast‐reacting minerals can have profound impacts on subsequent chemical‐physical alteration of the fractures. This study adopts the micro‐continuum approach to provide fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2022-02, Vol.58 (2), p.n/a
Hauptverfasser: Zhang, Qian, Deng, Hang, Dong, Yanhui, Molins, Sergi, Li, Xiao, Steefel, Carl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Water resources research
container_volume 58
creator Zhang, Qian
Deng, Hang
Dong, Yanhui
Molins, Sergi
Li, Xiao
Steefel, Carl
description In multi‐mineral fractured rocks, the altered porous layer on the fracture surface resulting from preferential dissolution of the fast‐reacting minerals can have profound impacts on subsequent chemical‐physical alteration of the fractures. This study adopts the micro‐continuum approach to provide further understanding of reactive transport processes in the altered layer (AL), and mass exchanges with the bordering matrix and fracture. The modeling framework couples the Darcy‐Brinkman‐Stokes (DBS) solver in COMSOL Multiphysics and the geochemical modeling capability of CrunchFlow. Three‐dimensional steady state simulations with systematically varied chemical‐physical parameters of the AL were performed to examine the impacts of individual factors and processes. Our simulation results confirm previous observations that dissolution of the fast‐reacting mineral (i.e., calcite) is largely controlled by diffusion across the AL. We also show that dissolution of the slow‐reacting mineral (i.e., dolomite), which controls AL development and fracture enlargement, increases with surface area and has a complex dependence on different local rate‐limiting processes. In particular, advection can result in evident spatial variations in the local dissolution rates of dolomite, although it does not affect the bulk chemistry significantly. The difference in the spatial patterns between simulations with and without advection in the AL is more noticeable in the locations with smaller apertures, with up to 20% difference in local reaction rates. Therefore, it is important to include a full depiction of advection, diffusion, and reactions for accurately capturing local dynamics that control long‐term fracture evolution. Key Points Three‐dimensional simulations of reactive transport processes using the micro‐continuum approach based on a fractured dolostone experiment The altered layer (AL) as a diffusion barrier limits reactions of the fast‐reacting mineral and thus the matrix alteration Advection in the AL affects spatial patterns of mineral dissolution that controls subsequent AL development and fracture enlargement
doi_str_mv 10.1029/2021WR030578
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1842545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632129134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3954-fbd1cae8d6811bb2c90903aeed1b30c96463845b33dc2201143edc455cc2ebc33</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhS0EEkNgxwEs2NKJ7XL_eAktQiJlFDQKytJy2zWJo4k92O4hs8sROCMniaNhwYpVVUlfleq9R8h7zo45E-pEMMGvVwxY2w8vyIIrKZte9fCSLBiT0HBQ_WvyJuc7xrhsu35B9udhh7n4G1N8DDSu6Rjn7QYd_Z6ixZwxUx_oaTK2zKkOJjhabpF-iclh8uGGLk1J_oHuvKGGLr1N8c_j7zGG4sM839MV1lW_Q3qVTMjbmApdRoebt-TV2mwyvvtbj8iP069X41lzcfntfPx80RhQrWzWk-PW4OC6gfNpElYxxcAgOj4Bs6qTHQyynQCcFYJxLgGdlW1rrcDJAhyRD4e7scrU2fqC9tbGENAWzQcpWtlW6OMB2qb4c66G6Ls4p1D_0qIDwYXiICv16UBVjTknXOtt8vcm7TVn-jkB_W8CFYcD_stvcP9fVl-vxpWojYQnf52JSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632129134</pqid></control><display><type>article</type><title>Investigation of Coupled Processes in Fractures and the Bordering Matrix via a Micro‐Continuum Reactive Transport Model</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Zhang, Qian ; Deng, Hang ; Dong, Yanhui ; Molins, Sergi ; Li, Xiao ; Steefel, Carl</creator><creatorcontrib>Zhang, Qian ; Deng, Hang ; Dong, Yanhui ; Molins, Sergi ; Li, Xiao ; Steefel, Carl ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>In multi‐mineral fractured rocks, the altered porous layer on the fracture surface resulting from preferential dissolution of the fast‐reacting minerals can have profound impacts on subsequent chemical‐physical alteration of the fractures. This study adopts the micro‐continuum approach to provide further understanding of reactive transport processes in the altered layer (AL), and mass exchanges with the bordering matrix and fracture. The modeling framework couples the Darcy‐Brinkman‐Stokes (DBS) solver in COMSOL Multiphysics and the geochemical modeling capability of CrunchFlow. Three‐dimensional steady state simulations with systematically varied chemical‐physical parameters of the AL were performed to examine the impacts of individual factors and processes. Our simulation results confirm previous observations that dissolution of the fast‐reacting mineral (i.e., calcite) is largely controlled by diffusion across the AL. We also show that dissolution of the slow‐reacting mineral (i.e., dolomite), which controls AL development and fracture enlargement, increases with surface area and has a complex dependence on different local rate‐limiting processes. In particular, advection can result in evident spatial variations in the local dissolution rates of dolomite, although it does not affect the bulk chemistry significantly. The difference in the spatial patterns between simulations with and without advection in the AL is more noticeable in the locations with smaller apertures, with up to 20% difference in local reaction rates. Therefore, it is important to include a full depiction of advection, diffusion, and reactions for accurately capturing local dynamics that control long‐term fracture evolution. Key Points Three‐dimensional simulations of reactive transport processes using the micro‐continuum approach based on a fractured dolostone experiment The altered layer (AL) as a diffusion barrier limits reactions of the fast‐reacting mineral and thus the matrix alteration Advection in the AL affects spatial patterns of mineral dissolution that controls subsequent AL development and fracture enlargement</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2021WR030578</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Advection ; altered layer ; Calcite ; Darcy-Brinkman-Stokes ; Diffusion ; Diffusion rate ; Dissolution ; Dissolving ; Dolomite ; Dolostone ; Fracture surfaces ; fractured porous media ; GEOSCIENCES ; micro-continuum model ; Minerals ; Modelling ; Physical properties ; Simulation ; Spatial variations ; Transport processes</subject><ispartof>Water resources research, 2022-02, Vol.58 (2), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3954-fbd1cae8d6811bb2c90903aeed1b30c96463845b33dc2201143edc455cc2ebc33</citedby><cites>FETCH-LOGICAL-a3954-fbd1cae8d6811bb2c90903aeed1b30c96463845b33dc2201143edc455cc2ebc33</cites><orcidid>0000-0002-2802-611X ; 0000-0003-4815-8600 ; 0000-0001-7675-3218 ; 0000-0001-5784-996X ; 000000015784996X ; 0000000348158600 ; 0000000176753218 ; 000000022802611X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021WR030578$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021WR030578$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,11494,27903,27904,45553,45554,46446,46870</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1842545$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Deng, Hang</creatorcontrib><creatorcontrib>Dong, Yanhui</creatorcontrib><creatorcontrib>Molins, Sergi</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Steefel, Carl</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Investigation of Coupled Processes in Fractures and the Bordering Matrix via a Micro‐Continuum Reactive Transport Model</title><title>Water resources research</title><description>In multi‐mineral fractured rocks, the altered porous layer on the fracture surface resulting from preferential dissolution of the fast‐reacting minerals can have profound impacts on subsequent chemical‐physical alteration of the fractures. This study adopts the micro‐continuum approach to provide further understanding of reactive transport processes in the altered layer (AL), and mass exchanges with the bordering matrix and fracture. The modeling framework couples the Darcy‐Brinkman‐Stokes (DBS) solver in COMSOL Multiphysics and the geochemical modeling capability of CrunchFlow. Three‐dimensional steady state simulations with systematically varied chemical‐physical parameters of the AL were performed to examine the impacts of individual factors and processes. Our simulation results confirm previous observations that dissolution of the fast‐reacting mineral (i.e., calcite) is largely controlled by diffusion across the AL. We also show that dissolution of the slow‐reacting mineral (i.e., dolomite), which controls AL development and fracture enlargement, increases with surface area and has a complex dependence on different local rate‐limiting processes. In particular, advection can result in evident spatial variations in the local dissolution rates of dolomite, although it does not affect the bulk chemistry significantly. The difference in the spatial patterns between simulations with and without advection in the AL is more noticeable in the locations with smaller apertures, with up to 20% difference in local reaction rates. Therefore, it is important to include a full depiction of advection, diffusion, and reactions for accurately capturing local dynamics that control long‐term fracture evolution. Key Points Three‐dimensional simulations of reactive transport processes using the micro‐continuum approach based on a fractured dolostone experiment The altered layer (AL) as a diffusion barrier limits reactions of the fast‐reacting mineral and thus the matrix alteration Advection in the AL affects spatial patterns of mineral dissolution that controls subsequent AL development and fracture enlargement</description><subject>Advection</subject><subject>altered layer</subject><subject>Calcite</subject><subject>Darcy-Brinkman-Stokes</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Fracture surfaces</subject><subject>fractured porous media</subject><subject>GEOSCIENCES</subject><subject>micro-continuum model</subject><subject>Minerals</subject><subject>Modelling</subject><subject>Physical properties</subject><subject>Simulation</subject><subject>Spatial variations</subject><subject>Transport processes</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kU1uFDEQhS0EEkNgxwEs2NKJ7XL_eAktQiJlFDQKytJy2zWJo4k92O4hs8sROCMniaNhwYpVVUlfleq9R8h7zo45E-pEMMGvVwxY2w8vyIIrKZte9fCSLBiT0HBQ_WvyJuc7xrhsu35B9udhh7n4G1N8DDSu6Rjn7QYd_Z6ixZwxUx_oaTK2zKkOJjhabpF-iclh8uGGLk1J_oHuvKGGLr1N8c_j7zGG4sM839MV1lW_Q3qVTMjbmApdRoebt-TV2mwyvvtbj8iP069X41lzcfntfPx80RhQrWzWk-PW4OC6gfNpElYxxcAgOj4Bs6qTHQyynQCcFYJxLgGdlW1rrcDJAhyRD4e7scrU2fqC9tbGENAWzQcpWtlW6OMB2qb4c66G6Ls4p1D_0qIDwYXiICv16UBVjTknXOtt8vcm7TVn-jkB_W8CFYcD_stvcP9fVl-vxpWojYQnf52JSA</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Zhang, Qian</creator><creator>Deng, Hang</creator><creator>Dong, Yanhui</creator><creator>Molins, Sergi</creator><creator>Li, Xiao</creator><creator>Steefel, Carl</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2802-611X</orcidid><orcidid>https://orcid.org/0000-0003-4815-8600</orcidid><orcidid>https://orcid.org/0000-0001-7675-3218</orcidid><orcidid>https://orcid.org/0000-0001-5784-996X</orcidid><orcidid>https://orcid.org/000000015784996X</orcidid><orcidid>https://orcid.org/0000000348158600</orcidid><orcidid>https://orcid.org/0000000176753218</orcidid><orcidid>https://orcid.org/000000022802611X</orcidid></search><sort><creationdate>202202</creationdate><title>Investigation of Coupled Processes in Fractures and the Bordering Matrix via a Micro‐Continuum Reactive Transport Model</title><author>Zhang, Qian ; Deng, Hang ; Dong, Yanhui ; Molins, Sergi ; Li, Xiao ; Steefel, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3954-fbd1cae8d6811bb2c90903aeed1b30c96463845b33dc2201143edc455cc2ebc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advection</topic><topic>altered layer</topic><topic>Calcite</topic><topic>Darcy-Brinkman-Stokes</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Fracture surfaces</topic><topic>fractured porous media</topic><topic>GEOSCIENCES</topic><topic>micro-continuum model</topic><topic>Minerals</topic><topic>Modelling</topic><topic>Physical properties</topic><topic>Simulation</topic><topic>Spatial variations</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Deng, Hang</creatorcontrib><creatorcontrib>Dong, Yanhui</creatorcontrib><creatorcontrib>Molins, Sergi</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Steefel, Carl</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian</au><au>Deng, Hang</au><au>Dong, Yanhui</au><au>Molins, Sergi</au><au>Li, Xiao</au><au>Steefel, Carl</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Coupled Processes in Fractures and the Bordering Matrix via a Micro‐Continuum Reactive Transport Model</atitle><jtitle>Water resources research</jtitle><date>2022-02</date><risdate>2022</risdate><volume>58</volume><issue>2</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>In multi‐mineral fractured rocks, the altered porous layer on the fracture surface resulting from preferential dissolution of the fast‐reacting minerals can have profound impacts on subsequent chemical‐physical alteration of the fractures. This study adopts the micro‐continuum approach to provide further understanding of reactive transport processes in the altered layer (AL), and mass exchanges with the bordering matrix and fracture. The modeling framework couples the Darcy‐Brinkman‐Stokes (DBS) solver in COMSOL Multiphysics and the geochemical modeling capability of CrunchFlow. Three‐dimensional steady state simulations with systematically varied chemical‐physical parameters of the AL were performed to examine the impacts of individual factors and processes. Our simulation results confirm previous observations that dissolution of the fast‐reacting mineral (i.e., calcite) is largely controlled by diffusion across the AL. We also show that dissolution of the slow‐reacting mineral (i.e., dolomite), which controls AL development and fracture enlargement, increases with surface area and has a complex dependence on different local rate‐limiting processes. In particular, advection can result in evident spatial variations in the local dissolution rates of dolomite, although it does not affect the bulk chemistry significantly. The difference in the spatial patterns between simulations with and without advection in the AL is more noticeable in the locations with smaller apertures, with up to 20% difference in local reaction rates. Therefore, it is important to include a full depiction of advection, diffusion, and reactions for accurately capturing local dynamics that control long‐term fracture evolution. Key Points Three‐dimensional simulations of reactive transport processes using the micro‐continuum approach based on a fractured dolostone experiment The altered layer (AL) as a diffusion barrier limits reactions of the fast‐reacting mineral and thus the matrix alteration Advection in the AL affects spatial patterns of mineral dissolution that controls subsequent AL development and fracture enlargement</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2021WR030578</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2802-611X</orcidid><orcidid>https://orcid.org/0000-0003-4815-8600</orcidid><orcidid>https://orcid.org/0000-0001-7675-3218</orcidid><orcidid>https://orcid.org/0000-0001-5784-996X</orcidid><orcidid>https://orcid.org/000000015784996X</orcidid><orcidid>https://orcid.org/0000000348158600</orcidid><orcidid>https://orcid.org/0000000176753218</orcidid><orcidid>https://orcid.org/000000022802611X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2022-02, Vol.58 (2), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_osti_scitechconnect_1842545
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library
subjects Advection
altered layer
Calcite
Darcy-Brinkman-Stokes
Diffusion
Diffusion rate
Dissolution
Dissolving
Dolomite
Dolostone
Fracture surfaces
fractured porous media
GEOSCIENCES
micro-continuum model
Minerals
Modelling
Physical properties
Simulation
Spatial variations
Transport processes
title Investigation of Coupled Processes in Fractures and the Bordering Matrix via a Micro‐Continuum Reactive Transport Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Coupled%20Processes%20in%20Fractures%20and%20the%20Bordering%20Matrix%20via%20a%20Micro%E2%80%90Continuum%20Reactive%20Transport%20Model&rft.jtitle=Water%20resources%20research&rft.au=Zhang,%20Qian&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-02&rft.volume=58&rft.issue=2&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2021WR030578&rft_dat=%3Cproquest_osti_%3E2632129134%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632129134&rft_id=info:pmid/&rfr_iscdi=true