Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer

A detailed biomass pyrolysis kinetic scheme was assessed in the multiscale simulations of a single-particle pyrolyzer with slow pyrolysis and a pilot-scale entrained flow pyrolyzer with fast pyrolysis. The detailed kinetic scheme of biomass pyrolysis developed by the CRECK group consists of 32 react...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2021-03, Vol.418 (NA)
Hauptverfasser: Gao, Xi, Lu, Liqiang, Shahnam, Mehrdad, Rogers, William A., Smith, Kristin, Gaston, Katherine, Robichaud, David, Brennan Pecha, M., Crowley, Meagan, Ciesielski, Peter N., Debiagi, Paulo, Faravelli, Tiziano, Wiggins, Gavin, Finney, Charles E.A., Parks, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue NA
container_start_page
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 418
creator Gao, Xi
Lu, Liqiang
Shahnam, Mehrdad
Rogers, William A.
Smith, Kristin
Gaston, Katherine
Robichaud, David
Brennan Pecha, M.
Crowley, Meagan
Ciesielski, Peter N.
Debiagi, Paulo
Faravelli, Tiziano
Wiggins, Gavin
Finney, Charles E.A.
Parks, James E.
description A detailed biomass pyrolysis kinetic scheme was assessed in the multiscale simulations of a single-particle pyrolyzer with slow pyrolysis and a pilot-scale entrained flow pyrolyzer with fast pyrolysis. The detailed kinetic scheme of biomass pyrolysis developed by the CRECK group consists of 32 reactions and 58 species. A multiscale simulation model was developed, where the CRECK kinetics was employed to simulate biomass pyrolysis reactions, a one-dimensional particle model was utilized to simulate the intraparticle transport phenomena, and the particle-in-cell (PIC) model was employed to simulate the hydrodynamics. The multiscale model was first applied to simulate a single-particle pyrolysis experiment. The simulation with nonisothermal particles matched the experimental data better than the simulation with isothermal particles. Then the multiscale model was applied to simulate the pilot-scale entrained flow pyrolyzer. In this case, the simulation with isothermal particles matched the experimental data better than the simulation with nonisothermal particles. The reason for this difference might be that the kinetics itself already partially included the intraparticle transport effect as it was fitted using both TGA data (slow pyrolysis of small size biomass) and fluidized bed data (fast pyrolysis of relatively large size biomass). This study provides some insights into biomass pyrolysis kinetics development and pyrolyzer multiscale simulation for a future study.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1842492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1842492</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18424923</originalsourceid><addsrcrecordid>eNqNjctKA0EQRZtgwPj4h8J9w7w0M8sgih_gPlR6akzFnu5hbovEf_FfbRjBrauq4p57amU2ZbutbV2V1UXe6_betl2zvTRXwKkoioeu7DbmewcIMEpIFAdi6iWxeunpoHFkgKbzHP0ZCnrXIEkdwR1lFNJA44dPCsdeCJoPThoDFhE0vHmxE8-5k4HF8yUzcehzPqmPyS7l_H3mbO9p8PHzD70x64E95PZ3Xpu756fXxxcbkXQPp0nc0cUQxKV92TZV01X1v6AfgdxegQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gao, Xi ; Lu, Liqiang ; Shahnam, Mehrdad ; Rogers, William A. ; Smith, Kristin ; Gaston, Katherine ; Robichaud, David ; Brennan Pecha, M. ; Crowley, Meagan ; Ciesielski, Peter N. ; Debiagi, Paulo ; Faravelli, Tiziano ; Wiggins, Gavin ; Finney, Charles E.A. ; Parks, James E.</creator><creatorcontrib>Gao, Xi ; Lu, Liqiang ; Shahnam, Mehrdad ; Rogers, William A. ; Smith, Kristin ; Gaston, Katherine ; Robichaud, David ; Brennan Pecha, M. ; Crowley, Meagan ; Ciesielski, Peter N. ; Debiagi, Paulo ; Faravelli, Tiziano ; Wiggins, Gavin ; Finney, Charles E.A. ; Parks, James E. ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States) ; National Renewable Energy Lab. (NREL), Golden, CO (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A detailed biomass pyrolysis kinetic scheme was assessed in the multiscale simulations of a single-particle pyrolyzer with slow pyrolysis and a pilot-scale entrained flow pyrolyzer with fast pyrolysis. The detailed kinetic scheme of biomass pyrolysis developed by the CRECK group consists of 32 reactions and 58 species. A multiscale simulation model was developed, where the CRECK kinetics was employed to simulate biomass pyrolysis reactions, a one-dimensional particle model was utilized to simulate the intraparticle transport phenomena, and the particle-in-cell (PIC) model was employed to simulate the hydrodynamics. The multiscale model was first applied to simulate a single-particle pyrolysis experiment. The simulation with nonisothermal particles matched the experimental data better than the simulation with isothermal particles. Then the multiscale model was applied to simulate the pilot-scale entrained flow pyrolyzer. In this case, the simulation with isothermal particles matched the experimental data better than the simulation with nonisothermal particles. The reason for this difference might be that the kinetics itself already partially included the intraparticle transport effect as it was fitted using both TGA data (slow pyrolysis of small size biomass) and fluidized bed data (fast pyrolysis of relatively large size biomass). This study provides some insights into biomass pyrolysis kinetics development and pyrolyzer multiscale simulation for a future study.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>09 BIOMASS FUELS ; biomass ; CFD ; EE - Bioenergy Technologies Office (EE-3B) ; ENGINEERING ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; kinetics ; MFiX ; multiscale ; pyrolysis ; reactor modeling</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2021-03, Vol.418 (NA)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1842492$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Xi</creatorcontrib><creatorcontrib>Lu, Liqiang</creatorcontrib><creatorcontrib>Shahnam, Mehrdad</creatorcontrib><creatorcontrib>Rogers, William A.</creatorcontrib><creatorcontrib>Smith, Kristin</creatorcontrib><creatorcontrib>Gaston, Katherine</creatorcontrib><creatorcontrib>Robichaud, David</creatorcontrib><creatorcontrib>Brennan Pecha, M.</creatorcontrib><creatorcontrib>Crowley, Meagan</creatorcontrib><creatorcontrib>Ciesielski, Peter N.</creatorcontrib><creatorcontrib>Debiagi, Paulo</creatorcontrib><creatorcontrib>Faravelli, Tiziano</creatorcontrib><creatorcontrib>Wiggins, Gavin</creatorcontrib><creatorcontrib>Finney, Charles E.A.</creatorcontrib><creatorcontrib>Parks, James E.</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>A detailed biomass pyrolysis kinetic scheme was assessed in the multiscale simulations of a single-particle pyrolyzer with slow pyrolysis and a pilot-scale entrained flow pyrolyzer with fast pyrolysis. The detailed kinetic scheme of biomass pyrolysis developed by the CRECK group consists of 32 reactions and 58 species. A multiscale simulation model was developed, where the CRECK kinetics was employed to simulate biomass pyrolysis reactions, a one-dimensional particle model was utilized to simulate the intraparticle transport phenomena, and the particle-in-cell (PIC) model was employed to simulate the hydrodynamics. The multiscale model was first applied to simulate a single-particle pyrolysis experiment. The simulation with nonisothermal particles matched the experimental data better than the simulation with isothermal particles. Then the multiscale model was applied to simulate the pilot-scale entrained flow pyrolyzer. In this case, the simulation with isothermal particles matched the experimental data better than the simulation with nonisothermal particles. The reason for this difference might be that the kinetics itself already partially included the intraparticle transport effect as it was fitted using both TGA data (slow pyrolysis of small size biomass) and fluidized bed data (fast pyrolysis of relatively large size biomass). This study provides some insights into biomass pyrolysis kinetics development and pyrolyzer multiscale simulation for a future study.</description><subject>09 BIOMASS FUELS</subject><subject>biomass</subject><subject>CFD</subject><subject>EE - Bioenergy Technologies Office (EE-3B)</subject><subject>ENGINEERING</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>kinetics</subject><subject>MFiX</subject><subject>multiscale</subject><subject>pyrolysis</subject><subject>reactor modeling</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjctKA0EQRZtgwPj4h8J9w7w0M8sgih_gPlR6akzFnu5hbovEf_FfbRjBrauq4p57amU2ZbutbV2V1UXe6_betl2zvTRXwKkoioeu7DbmewcIMEpIFAdi6iWxeunpoHFkgKbzHP0ZCnrXIEkdwR1lFNJA44dPCsdeCJoPThoDFhE0vHmxE8-5k4HF8yUzcehzPqmPyS7l_H3mbO9p8PHzD70x64E95PZ3Xpu756fXxxcbkXQPp0nc0cUQxKV92TZV01X1v6AfgdxegQ</recordid><startdate>20210314</startdate><enddate>20210314</enddate><creator>Gao, Xi</creator><creator>Lu, Liqiang</creator><creator>Shahnam, Mehrdad</creator><creator>Rogers, William A.</creator><creator>Smith, Kristin</creator><creator>Gaston, Katherine</creator><creator>Robichaud, David</creator><creator>Brennan Pecha, M.</creator><creator>Crowley, Meagan</creator><creator>Ciesielski, Peter N.</creator><creator>Debiagi, Paulo</creator><creator>Faravelli, Tiziano</creator><creator>Wiggins, Gavin</creator><creator>Finney, Charles E.A.</creator><creator>Parks, James E.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20210314</creationdate><title>Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer</title><author>Gao, Xi ; Lu, Liqiang ; Shahnam, Mehrdad ; Rogers, William A. ; Smith, Kristin ; Gaston, Katherine ; Robichaud, David ; Brennan Pecha, M. ; Crowley, Meagan ; Ciesielski, Peter N. ; Debiagi, Paulo ; Faravelli, Tiziano ; Wiggins, Gavin ; Finney, Charles E.A. ; Parks, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18424923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>09 BIOMASS FUELS</topic><topic>biomass</topic><topic>CFD</topic><topic>EE - Bioenergy Technologies Office (EE-3B)</topic><topic>ENGINEERING</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>kinetics</topic><topic>MFiX</topic><topic>multiscale</topic><topic>pyrolysis</topic><topic>reactor modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xi</creatorcontrib><creatorcontrib>Lu, Liqiang</creatorcontrib><creatorcontrib>Shahnam, Mehrdad</creatorcontrib><creatorcontrib>Rogers, William A.</creatorcontrib><creatorcontrib>Smith, Kristin</creatorcontrib><creatorcontrib>Gaston, Katherine</creatorcontrib><creatorcontrib>Robichaud, David</creatorcontrib><creatorcontrib>Brennan Pecha, M.</creatorcontrib><creatorcontrib>Crowley, Meagan</creatorcontrib><creatorcontrib>Ciesielski, Peter N.</creatorcontrib><creatorcontrib>Debiagi, Paulo</creatorcontrib><creatorcontrib>Faravelli, Tiziano</creatorcontrib><creatorcontrib>Wiggins, Gavin</creatorcontrib><creatorcontrib>Finney, Charles E.A.</creatorcontrib><creatorcontrib>Parks, James E.</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xi</au><au>Lu, Liqiang</au><au>Shahnam, Mehrdad</au><au>Rogers, William A.</au><au>Smith, Kristin</au><au>Gaston, Katherine</au><au>Robichaud, David</au><au>Brennan Pecha, M.</au><au>Crowley, Meagan</au><au>Ciesielski, Peter N.</au><au>Debiagi, Paulo</au><au>Faravelli, Tiziano</au><au>Wiggins, Gavin</au><au>Finney, Charles E.A.</au><au>Parks, James E.</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</aucorp><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2021-03-14</date><risdate>2021</risdate><volume>418</volume><issue>NA</issue><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>A detailed biomass pyrolysis kinetic scheme was assessed in the multiscale simulations of a single-particle pyrolyzer with slow pyrolysis and a pilot-scale entrained flow pyrolyzer with fast pyrolysis. The detailed kinetic scheme of biomass pyrolysis developed by the CRECK group consists of 32 reactions and 58 species. A multiscale simulation model was developed, where the CRECK kinetics was employed to simulate biomass pyrolysis reactions, a one-dimensional particle model was utilized to simulate the intraparticle transport phenomena, and the particle-in-cell (PIC) model was employed to simulate the hydrodynamics. The multiscale model was first applied to simulate a single-particle pyrolysis experiment. The simulation with nonisothermal particles matched the experimental data better than the simulation with isothermal particles. Then the multiscale model was applied to simulate the pilot-scale entrained flow pyrolyzer. In this case, the simulation with isothermal particles matched the experimental data better than the simulation with nonisothermal particles. The reason for this difference might be that the kinetics itself already partially included the intraparticle transport effect as it was fitted using both TGA data (slow pyrolysis of small size biomass) and fluidized bed data (fast pyrolysis of relatively large size biomass). This study provides some insights into biomass pyrolysis kinetics development and pyrolyzer multiscale simulation for a future study.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2021-03, Vol.418 (NA)
issn 1385-8947
1873-3212
language eng
recordid cdi_osti_scitechconnect_1842492
source Access via ScienceDirect (Elsevier)
subjects 09 BIOMASS FUELS
biomass
CFD
EE - Bioenergy Technologies Office (EE-3B)
ENGINEERING
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
kinetics
MFiX
multiscale
pyrolysis
reactor modeling
title Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T13%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20a%20detailed%20biomass%20pyrolysis%20kinetic%20scheme%20in%20multiscale%20simulations%20of%20a%20single-particle%20pyrolyzer%20and%20a%20pilot-scale%20entrained%20flow%20pyrolyzer&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Gao,%20Xi&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV,%20and%20Albany,%20OR%20(United%20States)&rft.date=2021-03-14&rft.volume=418&rft.issue=NA&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/&rft_dat=%3Costi%3E1842492%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true