Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective
MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-09, Vol.102 (11) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physical review. B |
container_volume | 102 |
creator | Bruce, Adam V. Liu, Shuanglong Fry, James N. Cheng, Hai-Ping |
description | MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium Green's function techniques and our electric field gating method, enabled by a large-scale computational approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p–i–n junction configurations. Here, we demonstrate the presence of negative differential resistance for both in-plane and interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a thorough understanding of Esaki diodes. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1842247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1842247</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18422473</originalsourceid><addsrcrecordid>eNqNzLEKwjAUheEgChbtO1zcC7HW1riJVHRw0r2E9La9WpKSG3x-K4iz0_mHjzMRUZrlKlEqV9Nfb-VcxMwPKeU6l6qQKhLmYpnaLjCQDQ4stjrQC6GmpkGPNpDuwSMTB20Njgqu7pZCyfpJo3I18h4O0JDnkAyerKGhR4YBPQ9oPmdLMWt0zxh_dyFWp_J-PCeOA1VsKKDpjLN25NV6l6VpVmz-Qm849kg9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective</title><source>American Physical Society Journals</source><creator>Bruce, Adam V. ; Liu, Shuanglong ; Fry, James N. ; Cheng, Hai-Ping</creator><creatorcontrib>Bruce, Adam V. ; Liu, Shuanglong ; Fry, James N. ; Cheng, Hai-Ping ; Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><description>MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium Green's function techniques and our electric field gating method, enabled by a large-scale computational approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p–i–n junction configurations. Here, we demonstrate the presence of negative differential resistance for both in-plane and interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a thorough understanding of Esaki diodes.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; density functional theory ; density of states ; dichalcogenides ; diodes ; electronic structure ; Esaki diodes ; first-principles calculations ; Green's function methods ; interlayer band to band tunneling ; molybdenum disulfide ; NANOSCIENCE AND NANOTECHNOLOGY ; NEGF + DFT ; transport phenomena ; tunnel junctions</subject><ispartof>Physical review. B, 2020-09, Vol.102 (11)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000279358413 ; 0000000159901725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1842247$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruce, Adam V.</creatorcontrib><creatorcontrib>Liu, Shuanglong</creatorcontrib><creatorcontrib>Fry, James N.</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><title>Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective</title><title>Physical review. B</title><description>MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium Green's function techniques and our electric field gating method, enabled by a large-scale computational approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p–i–n junction configurations. Here, we demonstrate the presence of negative differential resistance for both in-plane and interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a thorough understanding of Esaki diodes.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>density functional theory</subject><subject>density of states</subject><subject>dichalcogenides</subject><subject>diodes</subject><subject>electronic structure</subject><subject>Esaki diodes</subject><subject>first-principles calculations</subject><subject>Green's function methods</subject><subject>interlayer band to band tunneling</subject><subject>molybdenum disulfide</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NEGF + DFT</subject><subject>transport phenomena</subject><subject>tunnel junctions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNzLEKwjAUheEgChbtO1zcC7HW1riJVHRw0r2E9La9WpKSG3x-K4iz0_mHjzMRUZrlKlEqV9Nfb-VcxMwPKeU6l6qQKhLmYpnaLjCQDQ4stjrQC6GmpkGPNpDuwSMTB20Njgqu7pZCyfpJo3I18h4O0JDnkAyerKGhR4YBPQ9oPmdLMWt0zxh_dyFWp_J-PCeOA1VsKKDpjLN25NV6l6VpVmz-Qm849kg9</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Bruce, Adam V.</creator><creator>Liu, Shuanglong</creator><creator>Fry, James N.</creator><creator>Cheng, Hai-Ping</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000279358413</orcidid><orcidid>https://orcid.org/0000000159901725</orcidid></search><sort><creationdate>20200914</creationdate><title>Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective</title><author>Bruce, Adam V. ; Liu, Shuanglong ; Fry, James N. ; Cheng, Hai-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18422473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>density functional theory</topic><topic>density of states</topic><topic>dichalcogenides</topic><topic>diodes</topic><topic>electronic structure</topic><topic>Esaki diodes</topic><topic>first-principles calculations</topic><topic>Green's function methods</topic><topic>interlayer band to band tunneling</topic><topic>molybdenum disulfide</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NEGF + DFT</topic><topic>transport phenomena</topic><topic>tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruce, Adam V.</creatorcontrib><creatorcontrib>Liu, Shuanglong</creatorcontrib><creatorcontrib>Fry, James N.</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruce, Adam V.</au><au>Liu, Shuanglong</au><au>Fry, James N.</au><au>Cheng, Hai-Ping</au><aucorp>Univ. of Florida, Gainesville, FL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective</atitle><jtitle>Physical review. B</jtitle><date>2020-09-14</date><risdate>2020</risdate><volume>102</volume><issue>11</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium Green's function techniques and our electric field gating method, enabled by a large-scale computational approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p–i–n junction configurations. Here, we demonstrate the presence of negative differential resistance for both in-plane and interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a thorough understanding of Esaki diodes.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><orcidid>https://orcid.org/0000000279358413</orcidid><orcidid>https://orcid.org/0000000159901725</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-09, Vol.102 (11) |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1842247 |
source | American Physical Society Journals |
subjects | ATOMIC AND MOLECULAR PHYSICS density functional theory density of states dichalcogenides diodes electronic structure Esaki diodes first-principles calculations Green's function methods interlayer band to band tunneling molybdenum disulfide NANOSCIENCE AND NANOTECHNOLOGY NEGF + DFT transport phenomena tunnel junctions |
title | Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20negative%20differential%20resistance%20in%20MoS2%20Esaki%20diodes:%20A%20first-principles%20perspective&rft.jtitle=Physical%20review.%20B&rft.au=Bruce,%20Adam%20V.&rft.aucorp=Univ.%20of%20Florida,%20Gainesville,%20FL%20(United%20States)&rft.date=2020-09-14&rft.volume=102&rft.issue=11&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/&rft_dat=%3Costi%3E1842247%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |