Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective

MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-09, Vol.102 (11)
Hauptverfasser: Bruce, Adam V., Liu, Shuanglong, Fry, James N., Cheng, Hai-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physical review. B
container_volume 102
creator Bruce, Adam V.
Liu, Shuanglong
Fry, James N.
Cheng, Hai-Ping
description MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium Green's function techniques and our electric field gating method, enabled by a large-scale computational approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p–i–n junction configurations. Here, we demonstrate the presence of negative differential resistance for both in-plane and interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a thorough understanding of Esaki diodes.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1842247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1842247</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18422473</originalsourceid><addsrcrecordid>eNqNzLEKwjAUheEgChbtO1zcC7HW1riJVHRw0r2E9La9WpKSG3x-K4iz0_mHjzMRUZrlKlEqV9Nfb-VcxMwPKeU6l6qQKhLmYpnaLjCQDQ4stjrQC6GmpkGPNpDuwSMTB20Njgqu7pZCyfpJo3I18h4O0JDnkAyerKGhR4YBPQ9oPmdLMWt0zxh_dyFWp_J-PCeOA1VsKKDpjLN25NV6l6VpVmz-Qm849kg9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective</title><source>American Physical Society Journals</source><creator>Bruce, Adam V. ; Liu, Shuanglong ; Fry, James N. ; Cheng, Hai-Ping</creator><creatorcontrib>Bruce, Adam V. ; Liu, Shuanglong ; Fry, James N. ; Cheng, Hai-Ping ; Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><description>MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium Green's function techniques and our electric field gating method, enabled by a large-scale computational approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p–i–n junction configurations. Here, we demonstrate the presence of negative differential resistance for both in-plane and interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a thorough understanding of Esaki diodes.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; density functional theory ; density of states ; dichalcogenides ; diodes ; electronic structure ; Esaki diodes ; first-principles calculations ; Green's function methods ; interlayer band to band tunneling ; molybdenum disulfide ; NANOSCIENCE AND NANOTECHNOLOGY ; NEGF + DFT ; transport phenomena ; tunnel junctions</subject><ispartof>Physical review. B, 2020-09, Vol.102 (11)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000279358413 ; 0000000159901725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1842247$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruce, Adam V.</creatorcontrib><creatorcontrib>Liu, Shuanglong</creatorcontrib><creatorcontrib>Fry, James N.</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><title>Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective</title><title>Physical review. B</title><description>MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium Green's function techniques and our electric field gating method, enabled by a large-scale computational approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p–i–n junction configurations. Here, we demonstrate the presence of negative differential resistance for both in-plane and interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a thorough understanding of Esaki diodes.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>density functional theory</subject><subject>density of states</subject><subject>dichalcogenides</subject><subject>diodes</subject><subject>electronic structure</subject><subject>Esaki diodes</subject><subject>first-principles calculations</subject><subject>Green's function methods</subject><subject>interlayer band to band tunneling</subject><subject>molybdenum disulfide</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NEGF + DFT</subject><subject>transport phenomena</subject><subject>tunnel junctions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNzLEKwjAUheEgChbtO1zcC7HW1riJVHRw0r2E9La9WpKSG3x-K4iz0_mHjzMRUZrlKlEqV9Nfb-VcxMwPKeU6l6qQKhLmYpnaLjCQDQ4stjrQC6GmpkGPNpDuwSMTB20Njgqu7pZCyfpJo3I18h4O0JDnkAyerKGhR4YBPQ9oPmdLMWt0zxh_dyFWp_J-PCeOA1VsKKDpjLN25NV6l6VpVmz-Qm849kg9</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Bruce, Adam V.</creator><creator>Liu, Shuanglong</creator><creator>Fry, James N.</creator><creator>Cheng, Hai-Ping</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000279358413</orcidid><orcidid>https://orcid.org/0000000159901725</orcidid></search><sort><creationdate>20200914</creationdate><title>Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective</title><author>Bruce, Adam V. ; Liu, Shuanglong ; Fry, James N. ; Cheng, Hai-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18422473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>density functional theory</topic><topic>density of states</topic><topic>dichalcogenides</topic><topic>diodes</topic><topic>electronic structure</topic><topic>Esaki diodes</topic><topic>first-principles calculations</topic><topic>Green's function methods</topic><topic>interlayer band to band tunneling</topic><topic>molybdenum disulfide</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NEGF + DFT</topic><topic>transport phenomena</topic><topic>tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruce, Adam V.</creatorcontrib><creatorcontrib>Liu, Shuanglong</creatorcontrib><creatorcontrib>Fry, James N.</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruce, Adam V.</au><au>Liu, Shuanglong</au><au>Fry, James N.</au><au>Cheng, Hai-Ping</au><aucorp>Univ. of Florida, Gainesville, FL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective</atitle><jtitle>Physical review. B</jtitle><date>2020-09-14</date><risdate>2020</risdate><volume>102</volume><issue>11</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium Green's function techniques and our electric field gating method, enabled by a large-scale computational approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p–i–n junction configurations. Here, we demonstrate the presence of negative differential resistance for both in-plane and interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a thorough understanding of Esaki diodes.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><orcidid>https://orcid.org/0000000279358413</orcidid><orcidid>https://orcid.org/0000000159901725</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-09, Vol.102 (11)
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1842247
source American Physical Society Journals
subjects ATOMIC AND MOLECULAR PHYSICS
density functional theory
density of states
dichalcogenides
diodes
electronic structure
Esaki diodes
first-principles calculations
Green's function methods
interlayer band to band tunneling
molybdenum disulfide
NANOSCIENCE AND NANOTECHNOLOGY
NEGF + DFT
transport phenomena
tunnel junctions
title Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20negative%20differential%20resistance%20in%20MoS2%20Esaki%20diodes:%20A%20first-principles%20perspective&rft.jtitle=Physical%20review.%20B&rft.au=Bruce,%20Adam%20V.&rft.aucorp=Univ.%20of%20Florida,%20Gainesville,%20FL%20(United%20States)&rft.date=2020-09-14&rft.volume=102&rft.issue=11&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/&rft_dat=%3Costi%3E1842247%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true