Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence
Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. Th...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2021-03, Vol.12 (11) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | The journal of physical chemistry letters |
container_volume | 12 |
creator | Freixas, Victor M. White, Alexander James Nelson, Tammie Renee Song, Huajing Makhov, Dmitry V. Shalashilin, Dmitrii Fernandez-Alberti, S. Tretiak, Sergei |
description | Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1841929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1841929</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18419293</originalsourceid><addsrcrecordid>eNqNjb0KwjAURoMoWH_eIbgXGq02dROtuNRFB7cSk2sbSXOliaJvbwUHR6fvHDjwdUjA0piHCePz7g_3ycC5axQt0ognATnt0YYrpcVZeC1p9pTag6IHLzzQHA3IuxEN3bysqLV0NAdfoUKDpQa3pBLrm2i0Q0uFVa3aBzQlWAkj0rsI42D83SGZbLPjehei87pwnxtZtb0F6QvGY5ZO09lf0RtPh0OQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Freixas, Victor M. ; White, Alexander James ; Nelson, Tammie Renee ; Song, Huajing ; Makhov, Dmitry V. ; Shalashilin, Dmitrii ; Fernandez-Alberti, S. ; Tretiak, Sergei</creator><creatorcontrib>Freixas, Victor M. ; White, Alexander James ; Nelson, Tammie Renee ; Song, Huajing ; Makhov, Dmitry V. ; Shalashilin, Dmitrii ; Fernandez-Alberti, S. ; Tretiak, Sergei ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>The journal of physical chemistry letters, 2021-03, Vol.12 (11)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000277713899 ; 0000000231735291 ; 0000000155473647 ; 0000000159587377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1841929$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Freixas, Victor M.</creatorcontrib><creatorcontrib>White, Alexander James</creatorcontrib><creatorcontrib>Nelson, Tammie Renee</creatorcontrib><creatorcontrib>Song, Huajing</creatorcontrib><creatorcontrib>Makhov, Dmitry V.</creatorcontrib><creatorcontrib>Shalashilin, Dmitrii</creatorcontrib><creatorcontrib>Fernandez-Alberti, S.</creatorcontrib><creatorcontrib>Tretiak, Sergei</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence</title><title>The journal of physical chemistry letters</title><description>Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjb0KwjAURoMoWH_eIbgXGq02dROtuNRFB7cSk2sbSXOliaJvbwUHR6fvHDjwdUjA0piHCePz7g_3ycC5axQt0ognATnt0YYrpcVZeC1p9pTag6IHLzzQHA3IuxEN3bysqLV0NAdfoUKDpQa3pBLrm2i0Q0uFVa3aBzQlWAkj0rsI42D83SGZbLPjehei87pwnxtZtb0F6QvGY5ZO09lf0RtPh0OQ</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Freixas, Victor M.</creator><creator>White, Alexander James</creator><creator>Nelson, Tammie Renee</creator><creator>Song, Huajing</creator><creator>Makhov, Dmitry V.</creator><creator>Shalashilin, Dmitrii</creator><creator>Fernandez-Alberti, S.</creator><creator>Tretiak, Sergei</creator><general>American Chemical Society</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000277713899</orcidid><orcidid>https://orcid.org/0000000231735291</orcidid><orcidid>https://orcid.org/0000000155473647</orcidid><orcidid>https://orcid.org/0000000159587377</orcidid></search><sort><creationdate>20210317</creationdate><title>Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence</title><author>Freixas, Victor M. ; White, Alexander James ; Nelson, Tammie Renee ; Song, Huajing ; Makhov, Dmitry V. ; Shalashilin, Dmitrii ; Fernandez-Alberti, S. ; Tretiak, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18419293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freixas, Victor M.</creatorcontrib><creatorcontrib>White, Alexander James</creatorcontrib><creatorcontrib>Nelson, Tammie Renee</creatorcontrib><creatorcontrib>Song, Huajing</creatorcontrib><creatorcontrib>Makhov, Dmitry V.</creatorcontrib><creatorcontrib>Shalashilin, Dmitrii</creatorcontrib><creatorcontrib>Fernandez-Alberti, S.</creatorcontrib><creatorcontrib>Tretiak, Sergei</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freixas, Victor M.</au><au>White, Alexander James</au><au>Nelson, Tammie Renee</au><au>Song, Huajing</au><au>Makhov, Dmitry V.</au><au>Shalashilin, Dmitrii</au><au>Fernandez-Alberti, S.</au><au>Tretiak, Sergei</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence</atitle><jtitle>The journal of physical chemistry letters</jtitle><date>2021-03-17</date><risdate>2021</risdate><volume>12</volume><issue>11</issue><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><orcidid>https://orcid.org/0000000277713899</orcidid><orcidid>https://orcid.org/0000000231735291</orcidid><orcidid>https://orcid.org/0000000155473647</orcidid><orcidid>https://orcid.org/0000000159587377</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2021-03, Vol.12 (11) |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_osti_scitechconnect_1841929 |
source | ACS_美国化学学会期刊(与NSTL共建) |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Adiabatic%20Excited%20State%20Molecular%20Dynamics%20Methodologies:%20comparison%20and%20convergence&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Freixas,%20Victor%20M.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-03-17&rft.volume=12&rft.issue=11&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/&rft_dat=%3Costi%3E1841929%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |