Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence

Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-03, Vol.12 (11)
Hauptverfasser: Freixas, Victor M., White, Alexander James, Nelson, Tammie Renee, Song, Huajing, Makhov, Dmitry V., Shalashilin, Dmitrii, Fernandez-Alberti, S., Tretiak, Sergei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title The journal of physical chemistry letters
container_volume 12
creator Freixas, Victor M.
White, Alexander James
Nelson, Tammie Renee
Song, Huajing
Makhov, Dmitry V.
Shalashilin, Dmitrii
Fernandez-Alberti, S.
Tretiak, Sergei
description Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1841929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1841929</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18419293</originalsourceid><addsrcrecordid>eNqNjb0KwjAURoMoWH_eIbgXGq02dROtuNRFB7cSk2sbSXOliaJvbwUHR6fvHDjwdUjA0piHCePz7g_3ycC5axQt0ognATnt0YYrpcVZeC1p9pTag6IHLzzQHA3IuxEN3bysqLV0NAdfoUKDpQa3pBLrm2i0Q0uFVa3aBzQlWAkj0rsI42D83SGZbLPjehei87pwnxtZtb0F6QvGY5ZO09lf0RtPh0OQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Freixas, Victor M. ; White, Alexander James ; Nelson, Tammie Renee ; Song, Huajing ; Makhov, Dmitry V. ; Shalashilin, Dmitrii ; Fernandez-Alberti, S. ; Tretiak, Sergei</creator><creatorcontrib>Freixas, Victor M. ; White, Alexander James ; Nelson, Tammie Renee ; Song, Huajing ; Makhov, Dmitry V. ; Shalashilin, Dmitrii ; Fernandez-Alberti, S. ; Tretiak, Sergei ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>The journal of physical chemistry letters, 2021-03, Vol.12 (11)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000277713899 ; 0000000231735291 ; 0000000155473647 ; 0000000159587377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1841929$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Freixas, Victor M.</creatorcontrib><creatorcontrib>White, Alexander James</creatorcontrib><creatorcontrib>Nelson, Tammie Renee</creatorcontrib><creatorcontrib>Song, Huajing</creatorcontrib><creatorcontrib>Makhov, Dmitry V.</creatorcontrib><creatorcontrib>Shalashilin, Dmitrii</creatorcontrib><creatorcontrib>Fernandez-Alberti, S.</creatorcontrib><creatorcontrib>Tretiak, Sergei</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence</title><title>The journal of physical chemistry letters</title><description>Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjb0KwjAURoMoWH_eIbgXGq02dROtuNRFB7cSk2sbSXOliaJvbwUHR6fvHDjwdUjA0piHCePz7g_3ycC5axQt0ognATnt0YYrpcVZeC1p9pTag6IHLzzQHA3IuxEN3bysqLV0NAdfoUKDpQa3pBLrm2i0Q0uFVa3aBzQlWAkj0rsI42D83SGZbLPjehei87pwnxtZtb0F6QvGY5ZO09lf0RtPh0OQ</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Freixas, Victor M.</creator><creator>White, Alexander James</creator><creator>Nelson, Tammie Renee</creator><creator>Song, Huajing</creator><creator>Makhov, Dmitry V.</creator><creator>Shalashilin, Dmitrii</creator><creator>Fernandez-Alberti, S.</creator><creator>Tretiak, Sergei</creator><general>American Chemical Society</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000277713899</orcidid><orcidid>https://orcid.org/0000000231735291</orcidid><orcidid>https://orcid.org/0000000155473647</orcidid><orcidid>https://orcid.org/0000000159587377</orcidid></search><sort><creationdate>20210317</creationdate><title>Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence</title><author>Freixas, Victor M. ; White, Alexander James ; Nelson, Tammie Renee ; Song, Huajing ; Makhov, Dmitry V. ; Shalashilin, Dmitrii ; Fernandez-Alberti, S. ; Tretiak, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18419293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freixas, Victor M.</creatorcontrib><creatorcontrib>White, Alexander James</creatorcontrib><creatorcontrib>Nelson, Tammie Renee</creatorcontrib><creatorcontrib>Song, Huajing</creatorcontrib><creatorcontrib>Makhov, Dmitry V.</creatorcontrib><creatorcontrib>Shalashilin, Dmitrii</creatorcontrib><creatorcontrib>Fernandez-Alberti, S.</creatorcontrib><creatorcontrib>Tretiak, Sergei</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freixas, Victor M.</au><au>White, Alexander James</au><au>Nelson, Tammie Renee</au><au>Song, Huajing</au><au>Makhov, Dmitry V.</au><au>Shalashilin, Dmitrii</au><au>Fernandez-Alberti, S.</au><au>Tretiak, Sergei</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence</atitle><jtitle>The journal of physical chemistry letters</jtitle><date>2021-03-17</date><risdate>2021</risdate><volume>12</volume><issue>11</issue><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum–classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><orcidid>https://orcid.org/0000000277713899</orcidid><orcidid>https://orcid.org/0000000231735291</orcidid><orcidid>https://orcid.org/0000000155473647</orcidid><orcidid>https://orcid.org/0000000159587377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-03, Vol.12 (11)
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_1841929
source ACS_美国化学学会期刊(与NSTL共建)
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Non-Adiabatic Excited State Molecular Dynamics Methodologies: comparison and convergence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Adiabatic%20Excited%20State%20Molecular%20Dynamics%20Methodologies:%20comparison%20and%20convergence&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Freixas,%20Victor%20M.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-03-17&rft.volume=12&rft.issue=11&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/&rft_dat=%3Costi%3E1841929%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true