Giant doping response of magnetic anisotropy in MnTe
Developing simple ways to control spin states in spintronic devices is a crucial step towards increasing their functionality. MnTe is a room-temperature antiferromagnet with promising spintronic properties, including for thermospintronics and magnon-based devices. Here, we show that, in MnTe, less t...
Gespeichert in:
Veröffentlicht in: | Physical review materials 2022-01, Vol.6 (1), Article 014404 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physical review materials |
container_volume | 6 |
creator | Moseley, Duncan H. Taddei, Keith M. Yan, Jiaqiang McGuire, Michael A. Calder, Stuart Polash, M. M. H. Vashaee, Daryoosh Zhang, Xiaofan Zhao, Huaizhou Parker, David S. Fishman, Randy S. Hermann, Raphaël P. |
description | Developing simple ways to control spin states in spintronic devices is a crucial step towards increasing their functionality. MnTe is a room-temperature antiferromagnet with promising spintronic properties, including for thermospintronics and magnon-based devices. Here, we show that, in MnTe, less than 1% Li is sufficient to produce a dramatic spin reorientation as observed by neutron diffraction. The behavior of the 0001 magnetic Bragg peak reveals a significant reorientation of the Mn spins from planar in the pure material to almost completely axial with minimal Li doping. Temperature dependence of the magnetic peaks in Li-doped samples indicates that axial spins shift back to planar suddenly upon approaching the Néel temperature (TN = 307 K). Density functional theory calculations support the idea that a shift in the Fermi level caused by doping is responsible for switching the material between two competing magnetic ground states. These results pave the way for developing easy switching of magnetic states in functional materials such as spintronic devices and topological insulators. |
doi_str_mv | 10.1103/PhysRevMaterials.6.014404 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1841498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevMaterials_6_014404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-289cd716d710454af120141d3adb5aaa685cdb3b72ea04cd131fca5428704fb3</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYMoOOb-Q_S9M7dJ2uZRhk5hQ5G9h9s03SIuKUkQ-u-t1Afx4XDOw-Hcy0fILbA1AOP3b6cxvduvPWYbHX6mdbVmIAQTF2RRiloWSkl--Sdfk1VKH4wxaCSUtVoQsXXoM-3C4PyRRpuG4JOloadnPHqbnaHoXQo5hmGkztO9P9gbctVP5-zq15fk8PR42DwXu9fty-ZhVxjOVS7KRpmuhmoSE1JgD-X0HnQcu1YiYtVI07W8rUuLTJgOOPQGpSibmom-5UtyN8-GlJ1OxmVrTiZ4b03W0AgQqplKai6ZGFKKttdDdGeMowamfyjp_5R0pWdK_Bv9yF-u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Giant doping response of magnetic anisotropy in MnTe</title><source>American Physical Society Journals</source><creator>Moseley, Duncan H. ; Taddei, Keith M. ; Yan, Jiaqiang ; McGuire, Michael A. ; Calder, Stuart ; Polash, M. M. H. ; Vashaee, Daryoosh ; Zhang, Xiaofan ; Zhao, Huaizhou ; Parker, David S. ; Fishman, Randy S. ; Hermann, Raphaël P.</creator><creatorcontrib>Moseley, Duncan H. ; Taddei, Keith M. ; Yan, Jiaqiang ; McGuire, Michael A. ; Calder, Stuart ; Polash, M. M. H. ; Vashaee, Daryoosh ; Zhang, Xiaofan ; Zhao, Huaizhou ; Parker, David S. ; Fishman, Randy S. ; Hermann, Raphaël P. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Developing simple ways to control spin states in spintronic devices is a crucial step towards increasing their functionality. MnTe is a room-temperature antiferromagnet with promising spintronic properties, including for thermospintronics and magnon-based devices. Here, we show that, in MnTe, less than 1% Li is sufficient to produce a dramatic spin reorientation as observed by neutron diffraction. The behavior of the 0001 magnetic Bragg peak reveals a significant reorientation of the Mn spins from planar in the pure material to almost completely axial with minimal Li doping. Temperature dependence of the magnetic peaks in Li-doped samples indicates that axial spins shift back to planar suddenly upon approaching the Néel temperature (TN = 307 K). Density functional theory calculations support the idea that a shift in the Fermi level caused by doping is responsible for switching the material between two competing magnetic ground states. These results pave the way for developing easy switching of magnetic states in functional materials such as spintronic devices and topological insulators.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.6.014404</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Antiferromagnetism ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Density functional theory ; Magnetic anistropy ; MATERIALS SCIENCE ; Neutron diffraction ; Spintronics</subject><ispartof>Physical review materials, 2022-01, Vol.6 (1), Article 014404</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-289cd716d710454af120141d3adb5aaa685cdb3b72ea04cd131fca5428704fb3</citedby><cites>FETCH-LOGICAL-c339t-289cd716d710454af120141d3adb5aaa685cdb3b72ea04cd131fca5428704fb3</cites><orcidid>0000-0002-8179-2841 ; 0000-0002-6138-5624 ; 0000-0001-6101-1334 ; 0000-0001-6625-4706 ; 0000-0001-8402-3741 ; 0000-0003-3667-3672 ; 0000-0002-1468-0823 ; 0000-0003-1762-9406 ; 0000-0001-9848-7491 ; 0000-0003-4351-8347 ; 0000000166254706 ; 0000000261385624 ; 0000000161011334 ; 0000000184023741 ; 0000000198487491 ; 0000000214680823 ; 0000000317629406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1841498$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moseley, Duncan H.</creatorcontrib><creatorcontrib>Taddei, Keith M.</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>McGuire, Michael A.</creatorcontrib><creatorcontrib>Calder, Stuart</creatorcontrib><creatorcontrib>Polash, M. M. H.</creatorcontrib><creatorcontrib>Vashaee, Daryoosh</creatorcontrib><creatorcontrib>Zhang, Xiaofan</creatorcontrib><creatorcontrib>Zhao, Huaizhou</creatorcontrib><creatorcontrib>Parker, David S.</creatorcontrib><creatorcontrib>Fishman, Randy S.</creatorcontrib><creatorcontrib>Hermann, Raphaël P.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Giant doping response of magnetic anisotropy in MnTe</title><title>Physical review materials</title><description>Developing simple ways to control spin states in spintronic devices is a crucial step towards increasing their functionality. MnTe is a room-temperature antiferromagnet with promising spintronic properties, including for thermospintronics and magnon-based devices. Here, we show that, in MnTe, less than 1% Li is sufficient to produce a dramatic spin reorientation as observed by neutron diffraction. The behavior of the 0001 magnetic Bragg peak reveals a significant reorientation of the Mn spins from planar in the pure material to almost completely axial with minimal Li doping. Temperature dependence of the magnetic peaks in Li-doped samples indicates that axial spins shift back to planar suddenly upon approaching the Néel temperature (TN = 307 K). Density functional theory calculations support the idea that a shift in the Fermi level caused by doping is responsible for switching the material between two competing magnetic ground states. These results pave the way for developing easy switching of magnetic states in functional materials such as spintronic devices and topological insulators.</description><subject>Antiferromagnetism</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Density functional theory</subject><subject>Magnetic anistropy</subject><subject>MATERIALS SCIENCE</subject><subject>Neutron diffraction</subject><subject>Spintronics</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAUhYMoOOb-Q_S9M7dJ2uZRhk5hQ5G9h9s03SIuKUkQ-u-t1Afx4XDOw-Hcy0fILbA1AOP3b6cxvduvPWYbHX6mdbVmIAQTF2RRiloWSkl--Sdfk1VKH4wxaCSUtVoQsXXoM-3C4PyRRpuG4JOloadnPHqbnaHoXQo5hmGkztO9P9gbctVP5-zq15fk8PR42DwXu9fty-ZhVxjOVS7KRpmuhmoSE1JgD-X0HnQcu1YiYtVI07W8rUuLTJgOOPQGpSibmom-5UtyN8-GlJ1OxmVrTiZ4b03W0AgQqplKai6ZGFKKttdDdGeMowamfyjp_5R0pWdK_Bv9yF-u</recordid><startdate>20220118</startdate><enddate>20220118</enddate><creator>Moseley, Duncan H.</creator><creator>Taddei, Keith M.</creator><creator>Yan, Jiaqiang</creator><creator>McGuire, Michael A.</creator><creator>Calder, Stuart</creator><creator>Polash, M. M. H.</creator><creator>Vashaee, Daryoosh</creator><creator>Zhang, Xiaofan</creator><creator>Zhao, Huaizhou</creator><creator>Parker, David S.</creator><creator>Fishman, Randy S.</creator><creator>Hermann, Raphaël P.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8179-2841</orcidid><orcidid>https://orcid.org/0000-0002-6138-5624</orcidid><orcidid>https://orcid.org/0000-0001-6101-1334</orcidid><orcidid>https://orcid.org/0000-0001-6625-4706</orcidid><orcidid>https://orcid.org/0000-0001-8402-3741</orcidid><orcidid>https://orcid.org/0000-0003-3667-3672</orcidid><orcidid>https://orcid.org/0000-0002-1468-0823</orcidid><orcidid>https://orcid.org/0000-0003-1762-9406</orcidid><orcidid>https://orcid.org/0000-0001-9848-7491</orcidid><orcidid>https://orcid.org/0000-0003-4351-8347</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid><orcidid>https://orcid.org/0000000261385624</orcidid><orcidid>https://orcid.org/0000000161011334</orcidid><orcidid>https://orcid.org/0000000184023741</orcidid><orcidid>https://orcid.org/0000000198487491</orcidid><orcidid>https://orcid.org/0000000214680823</orcidid><orcidid>https://orcid.org/0000000317629406</orcidid></search><sort><creationdate>20220118</creationdate><title>Giant doping response of magnetic anisotropy in MnTe</title><author>Moseley, Duncan H. ; Taddei, Keith M. ; Yan, Jiaqiang ; McGuire, Michael A. ; Calder, Stuart ; Polash, M. M. H. ; Vashaee, Daryoosh ; Zhang, Xiaofan ; Zhao, Huaizhou ; Parker, David S. ; Fishman, Randy S. ; Hermann, Raphaël P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-289cd716d710454af120141d3adb5aaa685cdb3b72ea04cd131fca5428704fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Density functional theory</topic><topic>Magnetic anistropy</topic><topic>MATERIALS SCIENCE</topic><topic>Neutron diffraction</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moseley, Duncan H.</creatorcontrib><creatorcontrib>Taddei, Keith M.</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>McGuire, Michael A.</creatorcontrib><creatorcontrib>Calder, Stuart</creatorcontrib><creatorcontrib>Polash, M. M. H.</creatorcontrib><creatorcontrib>Vashaee, Daryoosh</creatorcontrib><creatorcontrib>Zhang, Xiaofan</creatorcontrib><creatorcontrib>Zhao, Huaizhou</creatorcontrib><creatorcontrib>Parker, David S.</creatorcontrib><creatorcontrib>Fishman, Randy S.</creatorcontrib><creatorcontrib>Hermann, Raphaël P.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moseley, Duncan H.</au><au>Taddei, Keith M.</au><au>Yan, Jiaqiang</au><au>McGuire, Michael A.</au><au>Calder, Stuart</au><au>Polash, M. M. H.</au><au>Vashaee, Daryoosh</au><au>Zhang, Xiaofan</au><au>Zhao, Huaizhou</au><au>Parker, David S.</au><au>Fishman, Randy S.</au><au>Hermann, Raphaël P.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant doping response of magnetic anisotropy in MnTe</atitle><jtitle>Physical review materials</jtitle><date>2022-01-18</date><risdate>2022</risdate><volume>6</volume><issue>1</issue><artnum>014404</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>Developing simple ways to control spin states in spintronic devices is a crucial step towards increasing their functionality. MnTe is a room-temperature antiferromagnet with promising spintronic properties, including for thermospintronics and magnon-based devices. Here, we show that, in MnTe, less than 1% Li is sufficient to produce a dramatic spin reorientation as observed by neutron diffraction. The behavior of the 0001 magnetic Bragg peak reveals a significant reorientation of the Mn spins from planar in the pure material to almost completely axial with minimal Li doping. Temperature dependence of the magnetic peaks in Li-doped samples indicates that axial spins shift back to planar suddenly upon approaching the Néel temperature (TN = 307 K). Density functional theory calculations support the idea that a shift in the Fermi level caused by doping is responsible for switching the material between two competing magnetic ground states. These results pave the way for developing easy switching of magnetic states in functional materials such as spintronic devices and topological insulators.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.6.014404</doi><orcidid>https://orcid.org/0000-0002-8179-2841</orcidid><orcidid>https://orcid.org/0000-0002-6138-5624</orcidid><orcidid>https://orcid.org/0000-0001-6101-1334</orcidid><orcidid>https://orcid.org/0000-0001-6625-4706</orcidid><orcidid>https://orcid.org/0000-0001-8402-3741</orcidid><orcidid>https://orcid.org/0000-0003-3667-3672</orcidid><orcidid>https://orcid.org/0000-0002-1468-0823</orcidid><orcidid>https://orcid.org/0000-0003-1762-9406</orcidid><orcidid>https://orcid.org/0000-0001-9848-7491</orcidid><orcidid>https://orcid.org/0000-0003-4351-8347</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid><orcidid>https://orcid.org/0000000261385624</orcidid><orcidid>https://orcid.org/0000000161011334</orcidid><orcidid>https://orcid.org/0000000184023741</orcidid><orcidid>https://orcid.org/0000000198487491</orcidid><orcidid>https://orcid.org/0000000214680823</orcidid><orcidid>https://orcid.org/0000000317629406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-9953 |
ispartof | Physical review materials, 2022-01, Vol.6 (1), Article 014404 |
issn | 2475-9953 2475-9953 |
language | eng |
recordid | cdi_osti_scitechconnect_1841498 |
source | American Physical Society Journals |
subjects | Antiferromagnetism CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Density functional theory Magnetic anistropy MATERIALS SCIENCE Neutron diffraction Spintronics |
title | Giant doping response of magnetic anisotropy in MnTe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20doping%20response%20of%20magnetic%20anisotropy%20in%20MnTe&rft.jtitle=Physical%20review%20materials&rft.au=Moseley,%20Duncan%20H.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-01-18&rft.volume=6&rft.issue=1&rft.artnum=014404&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.6.014404&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevMaterials_6_014404%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |