Pulse Compression Photoconductive Switching Using Negative Differential Mobility

This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illuminat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-02, Vol.69 (2), p.590-596
Hauptverfasser: Dowling, Karen, Dong, Yicong, Hall, David, Mukherjee, Saptarshi, Schneider, Joseph D., Hau-Riege, Stefan, Harrison, Sara E., Leos, Laura, Conway, Adam, Rakheja, Shaloo, Voss, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 2
container_start_page 590
container_title IEEE transactions on electron devices
container_volume 69
creator Dowling, Karen
Dong, Yicong
Hall, David
Mukherjee, Saptarshi
Schneider, Joseph D.
Hau-Riege, Stefan
Harrison, Sara E.
Leos, Laura
Conway, Adam
Rakheja, Shaloo
Voss, Lars
description This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illumination through an aperture in an opaque mask over this gap. An electric field above the threshold for negative differential mobility (NDM) enables pulse compression, which prevents the charge cloud from spreading temporally during the drift process. Due to the NDM phenomenon, the output electrical pulse is temporally compressed compared to the input optical pulse. This phenomenon is demonstrated using three different experiments with varied laser pulsewidth (28-700 ps) and device geometry (50- and 100- \mu \text{m} -length gaps). A 66% reduction in the full-width at half-maximum of the electrical pulse relative to the input optical pulse was demonstrated. This novel coupled optoelectronic device opens avenues for high-frequency, high-power, compact devices that could enable next-generation satellite communication systems with faster data rates and longer ranges.
doi_str_mv 10.1109/TED.2021.3136500
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1841454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9667092</ieee_id><sourcerecordid>2621793604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3ec3919819046ea415cdf9cda8bfd3ea924e121b0c1f863edf1a7528ebb760053</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVwR-ISwTnFaztOfERteUg8KtGercTZtK7auMQOqP-ehFZcdrXab0ajIeQa6AiAqvv5dDJilMGIA5cJpSdkAEmSxkoKeUoGlEIWK57xc3Lh_bo7pRBsQGazduMxGrvtrkHvrauj2coFZ1xdtibYb4w-f2wwK1svo4Xv5zsu87_HxFYVNlgHm2-iN1fYjQ37S3JW5Z3l1XEPyeJxOh8_x68fTy_jh9fYCJqGmKPhClQGigqJuYDElJUyZZ4VVckxV0wgMCiogSqTHMsK8jRhGRZFKilN-JDcHnydD1Z7YwOaVZe6RhM0ZAJEIjro7gDtGvfVog967dqm7nJpJhmkikvaU_RAmcZ532Cld43d5s1eA9V9uborV_fl6mO5neTmILGI-I8rKVOqGP8Fyjh1kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621793604</pqid></control><display><type>article</type><title>Pulse Compression Photoconductive Switching Using Negative Differential Mobility</title><source>IEEE Xplore</source><creator>Dowling, Karen ; Dong, Yicong ; Hall, David ; Mukherjee, Saptarshi ; Schneider, Joseph D. ; Hau-Riege, Stefan ; Harrison, Sara E. ; Leos, Laura ; Conway, Adam ; Rakheja, Shaloo ; Voss, Lars</creator><creatorcontrib>Dowling, Karen ; Dong, Yicong ; Hall, David ; Mukherjee, Saptarshi ; Schneider, Joseph D. ; Hau-Riege, Stefan ; Harrison, Sara E. ; Leos, Laura ; Conway, Adam ; Rakheja, Shaloo ; Voss, Lars</creatorcontrib><description>This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illumination through an aperture in an opaque mask over this gap. An electric field above the threshold for negative differential mobility (NDM) enables pulse compression, which prevents the charge cloud from spreading temporally during the drift process. Due to the NDM phenomenon, the output electrical pulse is temporally compressed compared to the input optical pulse. This phenomenon is demonstrated using three different experiments with varied laser pulsewidth (28-700 ps) and device geometry (50- and 100-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt;-length gaps). A 66% reduction in the full-width at half-maximum of the electrical pulse relative to the input optical pulse was demonstrated. This novel coupled optoelectronic device opens avenues for high-frequency, high-power, compact devices that could enable next-generation satellite communication systems with faster data rates and longer ranges.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3136500</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Apertures ; Arsenides ; Communications systems ; Coplanar waveguides ; Electric fields ; Gallium ; Gallium arsenide ; Gallium–arsenide (GaAs) ; Illumination ; Lasers ; negative differential mobility (NDM) ; Optical communication ; Optical pulse compression ; Optical switches ; Optoelectronic devices ; photoconductive switch ; Pulse compression ; Pulse duration ; Radio frequency ; Satellite communications</subject><ispartof>IEEE transactions on electron devices, 2022-02, Vol.69 (2), p.590-596</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3ec3919819046ea415cdf9cda8bfd3ea924e121b0c1f863edf1a7528ebb760053</citedby><cites>FETCH-LOGICAL-c407t-3ec3919819046ea415cdf9cda8bfd3ea924e121b0c1f863edf1a7528ebb760053</cites><orcidid>0000-0003-1450-5598 ; 0000-0002-6349-8219 ; 0000-0002-1753-9737 ; 0000-0002-2258-3695 ; 0000-0001-7501-275X ; 0000-0002-2840-8521 ; 0000-0002-3252-3338 ; 0000-0002-1138-9598 ; 0000000263498219 ; 0000000232523338 ; 0000000228408521 ; 0000000217539737 ; 0000000222583695 ; 0000000314505598 ; 000000017501275X ; 0000000211389598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9667092$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,796,885,27915,27916,54749</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1841454$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dowling, Karen</creatorcontrib><creatorcontrib>Dong, Yicong</creatorcontrib><creatorcontrib>Hall, David</creatorcontrib><creatorcontrib>Mukherjee, Saptarshi</creatorcontrib><creatorcontrib>Schneider, Joseph D.</creatorcontrib><creatorcontrib>Hau-Riege, Stefan</creatorcontrib><creatorcontrib>Harrison, Sara E.</creatorcontrib><creatorcontrib>Leos, Laura</creatorcontrib><creatorcontrib>Conway, Adam</creatorcontrib><creatorcontrib>Rakheja, Shaloo</creatorcontrib><creatorcontrib>Voss, Lars</creatorcontrib><title>Pulse Compression Photoconductive Switching Using Negative Differential Mobility</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illumination through an aperture in an opaque mask over this gap. An electric field above the threshold for negative differential mobility (NDM) enables pulse compression, which prevents the charge cloud from spreading temporally during the drift process. Due to the NDM phenomenon, the output electrical pulse is temporally compressed compared to the input optical pulse. This phenomenon is demonstrated using three different experiments with varied laser pulsewidth (28-700 ps) and device geometry (50- and 100-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt;-length gaps). A 66% reduction in the full-width at half-maximum of the electrical pulse relative to the input optical pulse was demonstrated. This novel coupled optoelectronic device opens avenues for high-frequency, high-power, compact devices that could enable next-generation satellite communication systems with faster data rates and longer ranges.</description><subject>Anodes</subject><subject>Apertures</subject><subject>Arsenides</subject><subject>Communications systems</subject><subject>Coplanar waveguides</subject><subject>Electric fields</subject><subject>Gallium</subject><subject>Gallium arsenide</subject><subject>Gallium–arsenide (GaAs)</subject><subject>Illumination</subject><subject>Lasers</subject><subject>negative differential mobility (NDM)</subject><subject>Optical communication</subject><subject>Optical pulse compression</subject><subject>Optical switches</subject><subject>Optoelectronic devices</subject><subject>photoconductive switch</subject><subject>Pulse compression</subject><subject>Pulse duration</subject><subject>Radio frequency</subject><subject>Satellite communications</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqVwR-ISwTnFaztOfERteUg8KtGercTZtK7auMQOqP-ehFZcdrXab0ajIeQa6AiAqvv5dDJilMGIA5cJpSdkAEmSxkoKeUoGlEIWK57xc3Lh_bo7pRBsQGazduMxGrvtrkHvrauj2coFZ1xdtibYb4w-f2wwK1svo4Xv5zsu87_HxFYVNlgHm2-iN1fYjQ37S3JW5Z3l1XEPyeJxOh8_x68fTy_jh9fYCJqGmKPhClQGigqJuYDElJUyZZ4VVckxV0wgMCiogSqTHMsK8jRhGRZFKilN-JDcHnydD1Z7YwOaVZe6RhM0ZAJEIjro7gDtGvfVog967dqm7nJpJhmkikvaU_RAmcZ532Cld43d5s1eA9V9uborV_fl6mO5neTmILGI-I8rKVOqGP8Fyjh1kg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Dowling, Karen</creator><creator>Dong, Yicong</creator><creator>Hall, David</creator><creator>Mukherjee, Saptarshi</creator><creator>Schneider, Joseph D.</creator><creator>Hau-Riege, Stefan</creator><creator>Harrison, Sara E.</creator><creator>Leos, Laura</creator><creator>Conway, Adam</creator><creator>Rakheja, Shaloo</creator><creator>Voss, Lars</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1450-5598</orcidid><orcidid>https://orcid.org/0000-0002-6349-8219</orcidid><orcidid>https://orcid.org/0000-0002-1753-9737</orcidid><orcidid>https://orcid.org/0000-0002-2258-3695</orcidid><orcidid>https://orcid.org/0000-0001-7501-275X</orcidid><orcidid>https://orcid.org/0000-0002-2840-8521</orcidid><orcidid>https://orcid.org/0000-0002-3252-3338</orcidid><orcidid>https://orcid.org/0000-0002-1138-9598</orcidid><orcidid>https://orcid.org/0000000263498219</orcidid><orcidid>https://orcid.org/0000000232523338</orcidid><orcidid>https://orcid.org/0000000228408521</orcidid><orcidid>https://orcid.org/0000000217539737</orcidid><orcidid>https://orcid.org/0000000222583695</orcidid><orcidid>https://orcid.org/0000000314505598</orcidid><orcidid>https://orcid.org/000000017501275X</orcidid><orcidid>https://orcid.org/0000000211389598</orcidid></search><sort><creationdate>20220201</creationdate><title>Pulse Compression Photoconductive Switching Using Negative Differential Mobility</title><author>Dowling, Karen ; Dong, Yicong ; Hall, David ; Mukherjee, Saptarshi ; Schneider, Joseph D. ; Hau-Riege, Stefan ; Harrison, Sara E. ; Leos, Laura ; Conway, Adam ; Rakheja, Shaloo ; Voss, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3ec3919819046ea415cdf9cda8bfd3ea924e121b0c1f863edf1a7528ebb760053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Apertures</topic><topic>Arsenides</topic><topic>Communications systems</topic><topic>Coplanar waveguides</topic><topic>Electric fields</topic><topic>Gallium</topic><topic>Gallium arsenide</topic><topic>Gallium–arsenide (GaAs)</topic><topic>Illumination</topic><topic>Lasers</topic><topic>negative differential mobility (NDM)</topic><topic>Optical communication</topic><topic>Optical pulse compression</topic><topic>Optical switches</topic><topic>Optoelectronic devices</topic><topic>photoconductive switch</topic><topic>Pulse compression</topic><topic>Pulse duration</topic><topic>Radio frequency</topic><topic>Satellite communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dowling, Karen</creatorcontrib><creatorcontrib>Dong, Yicong</creatorcontrib><creatorcontrib>Hall, David</creatorcontrib><creatorcontrib>Mukherjee, Saptarshi</creatorcontrib><creatorcontrib>Schneider, Joseph D.</creatorcontrib><creatorcontrib>Hau-Riege, Stefan</creatorcontrib><creatorcontrib>Harrison, Sara E.</creatorcontrib><creatorcontrib>Leos, Laura</creatorcontrib><creatorcontrib>Conway, Adam</creatorcontrib><creatorcontrib>Rakheja, Shaloo</creatorcontrib><creatorcontrib>Voss, Lars</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dowling, Karen</au><au>Dong, Yicong</au><au>Hall, David</au><au>Mukherjee, Saptarshi</au><au>Schneider, Joseph D.</au><au>Hau-Riege, Stefan</au><au>Harrison, Sara E.</au><au>Leos, Laura</au><au>Conway, Adam</au><au>Rakheja, Shaloo</au><au>Voss, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse Compression Photoconductive Switching Using Negative Differential Mobility</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>69</volume><issue>2</issue><spage>590</spage><epage>596</epage><pages>590-596</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illumination through an aperture in an opaque mask over this gap. An electric field above the threshold for negative differential mobility (NDM) enables pulse compression, which prevents the charge cloud from spreading temporally during the drift process. Due to the NDM phenomenon, the output electrical pulse is temporally compressed compared to the input optical pulse. This phenomenon is demonstrated using three different experiments with varied laser pulsewidth (28-700 ps) and device geometry (50- and 100-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt;-length gaps). A 66% reduction in the full-width at half-maximum of the electrical pulse relative to the input optical pulse was demonstrated. This novel coupled optoelectronic device opens avenues for high-frequency, high-power, compact devices that could enable next-generation satellite communication systems with faster data rates and longer ranges.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3136500</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1450-5598</orcidid><orcidid>https://orcid.org/0000-0002-6349-8219</orcidid><orcidid>https://orcid.org/0000-0002-1753-9737</orcidid><orcidid>https://orcid.org/0000-0002-2258-3695</orcidid><orcidid>https://orcid.org/0000-0001-7501-275X</orcidid><orcidid>https://orcid.org/0000-0002-2840-8521</orcidid><orcidid>https://orcid.org/0000-0002-3252-3338</orcidid><orcidid>https://orcid.org/0000-0002-1138-9598</orcidid><orcidid>https://orcid.org/0000000263498219</orcidid><orcidid>https://orcid.org/0000000232523338</orcidid><orcidid>https://orcid.org/0000000228408521</orcidid><orcidid>https://orcid.org/0000000217539737</orcidid><orcidid>https://orcid.org/0000000222583695</orcidid><orcidid>https://orcid.org/0000000314505598</orcidid><orcidid>https://orcid.org/000000017501275X</orcidid><orcidid>https://orcid.org/0000000211389598</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-02, Vol.69 (2), p.590-596
issn 0018-9383
1557-9646
language eng
recordid cdi_osti_scitechconnect_1841454
source IEEE Xplore
subjects Anodes
Apertures
Arsenides
Communications systems
Coplanar waveguides
Electric fields
Gallium
Gallium arsenide
Gallium–arsenide (GaAs)
Illumination
Lasers
negative differential mobility (NDM)
Optical communication
Optical pulse compression
Optical switches
Optoelectronic devices
photoconductive switch
Pulse compression
Pulse duration
Radio frequency
Satellite communications
title Pulse Compression Photoconductive Switching Using Negative Differential Mobility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20Compression%20Photoconductive%20Switching%20Using%20Negative%20Differential%20Mobility&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Dowling,%20Karen&rft.date=2022-02-01&rft.volume=69&rft.issue=2&rft.spage=590&rft.epage=596&rft.pages=590-596&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3136500&rft_dat=%3Cproquest_osti_%3E2621793604%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621793604&rft_id=info:pmid/&rft_ieee_id=9667092&rfr_iscdi=true