Pulse Compression Photoconductive Switching Using Negative Differential Mobility
This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illuminat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-02, Vol.69 (2), p.590-596 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 2 |
container_start_page | 590 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Dowling, Karen Dong, Yicong Hall, David Mukherjee, Saptarshi Schneider, Joseph D. Hau-Riege, Stefan Harrison, Sara E. Leos, Laura Conway, Adam Rakheja, Shaloo Voss, Lars |
description | This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illumination through an aperture in an opaque mask over this gap. An electric field above the threshold for negative differential mobility (NDM) enables pulse compression, which prevents the charge cloud from spreading temporally during the drift process. Due to the NDM phenomenon, the output electrical pulse is temporally compressed compared to the input optical pulse. This phenomenon is demonstrated using three different experiments with varied laser pulsewidth (28-700 ps) and device geometry (50- and 100- \mu \text{m} -length gaps). A 66% reduction in the full-width at half-maximum of the electrical pulse relative to the input optical pulse was demonstrated. This novel coupled optoelectronic device opens avenues for high-frequency, high-power, compact devices that could enable next-generation satellite communication systems with faster data rates and longer ranges. |
doi_str_mv | 10.1109/TED.2021.3136500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1841454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9667092</ieee_id><sourcerecordid>2621793604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3ec3919819046ea415cdf9cda8bfd3ea924e121b0c1f863edf1a7528ebb760053</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVwR-ISwTnFaztOfERteUg8KtGercTZtK7auMQOqP-ehFZcdrXab0ajIeQa6AiAqvv5dDJilMGIA5cJpSdkAEmSxkoKeUoGlEIWK57xc3Lh_bo7pRBsQGazduMxGrvtrkHvrauj2coFZ1xdtibYb4w-f2wwK1svo4Xv5zsu87_HxFYVNlgHm2-iN1fYjQ37S3JW5Z3l1XEPyeJxOh8_x68fTy_jh9fYCJqGmKPhClQGigqJuYDElJUyZZ4VVckxV0wgMCiogSqTHMsK8jRhGRZFKilN-JDcHnydD1Z7YwOaVZe6RhM0ZAJEIjro7gDtGvfVog967dqm7nJpJhmkikvaU_RAmcZ532Cld43d5s1eA9V9uborV_fl6mO5neTmILGI-I8rKVOqGP8Fyjh1kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621793604</pqid></control><display><type>article</type><title>Pulse Compression Photoconductive Switching Using Negative Differential Mobility</title><source>IEEE Xplore</source><creator>Dowling, Karen ; Dong, Yicong ; Hall, David ; Mukherjee, Saptarshi ; Schneider, Joseph D. ; Hau-Riege, Stefan ; Harrison, Sara E. ; Leos, Laura ; Conway, Adam ; Rakheja, Shaloo ; Voss, Lars</creator><creatorcontrib>Dowling, Karen ; Dong, Yicong ; Hall, David ; Mukherjee, Saptarshi ; Schneider, Joseph D. ; Hau-Riege, Stefan ; Harrison, Sara E. ; Leos, Laura ; Conway, Adam ; Rakheja, Shaloo ; Voss, Lars</creatorcontrib><description>This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illumination through an aperture in an opaque mask over this gap. An electric field above the threshold for negative differential mobility (NDM) enables pulse compression, which prevents the charge cloud from spreading temporally during the drift process. Due to the NDM phenomenon, the output electrical pulse is temporally compressed compared to the input optical pulse. This phenomenon is demonstrated using three different experiments with varied laser pulsewidth (28-700 ps) and device geometry (50- and 100-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>-length gaps). A 66% reduction in the full-width at half-maximum of the electrical pulse relative to the input optical pulse was demonstrated. This novel coupled optoelectronic device opens avenues for high-frequency, high-power, compact devices that could enable next-generation satellite communication systems with faster data rates and longer ranges.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3136500</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Apertures ; Arsenides ; Communications systems ; Coplanar waveguides ; Electric fields ; Gallium ; Gallium arsenide ; Gallium–arsenide (GaAs) ; Illumination ; Lasers ; negative differential mobility (NDM) ; Optical communication ; Optical pulse compression ; Optical switches ; Optoelectronic devices ; photoconductive switch ; Pulse compression ; Pulse duration ; Radio frequency ; Satellite communications</subject><ispartof>IEEE transactions on electron devices, 2022-02, Vol.69 (2), p.590-596</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3ec3919819046ea415cdf9cda8bfd3ea924e121b0c1f863edf1a7528ebb760053</citedby><cites>FETCH-LOGICAL-c407t-3ec3919819046ea415cdf9cda8bfd3ea924e121b0c1f863edf1a7528ebb760053</cites><orcidid>0000-0003-1450-5598 ; 0000-0002-6349-8219 ; 0000-0002-1753-9737 ; 0000-0002-2258-3695 ; 0000-0001-7501-275X ; 0000-0002-2840-8521 ; 0000-0002-3252-3338 ; 0000-0002-1138-9598 ; 0000000263498219 ; 0000000232523338 ; 0000000228408521 ; 0000000217539737 ; 0000000222583695 ; 0000000314505598 ; 000000017501275X ; 0000000211389598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9667092$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,796,885,27915,27916,54749</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1841454$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dowling, Karen</creatorcontrib><creatorcontrib>Dong, Yicong</creatorcontrib><creatorcontrib>Hall, David</creatorcontrib><creatorcontrib>Mukherjee, Saptarshi</creatorcontrib><creatorcontrib>Schneider, Joseph D.</creatorcontrib><creatorcontrib>Hau-Riege, Stefan</creatorcontrib><creatorcontrib>Harrison, Sara E.</creatorcontrib><creatorcontrib>Leos, Laura</creatorcontrib><creatorcontrib>Conway, Adam</creatorcontrib><creatorcontrib>Rakheja, Shaloo</creatorcontrib><creatorcontrib>Voss, Lars</creatorcontrib><title>Pulse Compression Photoconductive Switching Using Negative Differential Mobility</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illumination through an aperture in an opaque mask over this gap. An electric field above the threshold for negative differential mobility (NDM) enables pulse compression, which prevents the charge cloud from spreading temporally during the drift process. Due to the NDM phenomenon, the output electrical pulse is temporally compressed compared to the input optical pulse. This phenomenon is demonstrated using three different experiments with varied laser pulsewidth (28-700 ps) and device geometry (50- and 100-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>-length gaps). A 66% reduction in the full-width at half-maximum of the electrical pulse relative to the input optical pulse was demonstrated. This novel coupled optoelectronic device opens avenues for high-frequency, high-power, compact devices that could enable next-generation satellite communication systems with faster data rates and longer ranges.</description><subject>Anodes</subject><subject>Apertures</subject><subject>Arsenides</subject><subject>Communications systems</subject><subject>Coplanar waveguides</subject><subject>Electric fields</subject><subject>Gallium</subject><subject>Gallium arsenide</subject><subject>Gallium–arsenide (GaAs)</subject><subject>Illumination</subject><subject>Lasers</subject><subject>negative differential mobility (NDM)</subject><subject>Optical communication</subject><subject>Optical pulse compression</subject><subject>Optical switches</subject><subject>Optoelectronic devices</subject><subject>photoconductive switch</subject><subject>Pulse compression</subject><subject>Pulse duration</subject><subject>Radio frequency</subject><subject>Satellite communications</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqVwR-ISwTnFaztOfERteUg8KtGercTZtK7auMQOqP-ehFZcdrXab0ajIeQa6AiAqvv5dDJilMGIA5cJpSdkAEmSxkoKeUoGlEIWK57xc3Lh_bo7pRBsQGazduMxGrvtrkHvrauj2coFZ1xdtibYb4w-f2wwK1svo4Xv5zsu87_HxFYVNlgHm2-iN1fYjQ37S3JW5Z3l1XEPyeJxOh8_x68fTy_jh9fYCJqGmKPhClQGigqJuYDElJUyZZ4VVckxV0wgMCiogSqTHMsK8jRhGRZFKilN-JDcHnydD1Z7YwOaVZe6RhM0ZAJEIjro7gDtGvfVog967dqm7nJpJhmkikvaU_RAmcZ532Cld43d5s1eA9V9uborV_fl6mO5neTmILGI-I8rKVOqGP8Fyjh1kg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Dowling, Karen</creator><creator>Dong, Yicong</creator><creator>Hall, David</creator><creator>Mukherjee, Saptarshi</creator><creator>Schneider, Joseph D.</creator><creator>Hau-Riege, Stefan</creator><creator>Harrison, Sara E.</creator><creator>Leos, Laura</creator><creator>Conway, Adam</creator><creator>Rakheja, Shaloo</creator><creator>Voss, Lars</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1450-5598</orcidid><orcidid>https://orcid.org/0000-0002-6349-8219</orcidid><orcidid>https://orcid.org/0000-0002-1753-9737</orcidid><orcidid>https://orcid.org/0000-0002-2258-3695</orcidid><orcidid>https://orcid.org/0000-0001-7501-275X</orcidid><orcidid>https://orcid.org/0000-0002-2840-8521</orcidid><orcidid>https://orcid.org/0000-0002-3252-3338</orcidid><orcidid>https://orcid.org/0000-0002-1138-9598</orcidid><orcidid>https://orcid.org/0000000263498219</orcidid><orcidid>https://orcid.org/0000000232523338</orcidid><orcidid>https://orcid.org/0000000228408521</orcidid><orcidid>https://orcid.org/0000000217539737</orcidid><orcidid>https://orcid.org/0000000222583695</orcidid><orcidid>https://orcid.org/0000000314505598</orcidid><orcidid>https://orcid.org/000000017501275X</orcidid><orcidid>https://orcid.org/0000000211389598</orcidid></search><sort><creationdate>20220201</creationdate><title>Pulse Compression Photoconductive Switching Using Negative Differential Mobility</title><author>Dowling, Karen ; Dong, Yicong ; Hall, David ; Mukherjee, Saptarshi ; Schneider, Joseph D. ; Hau-Riege, Stefan ; Harrison, Sara E. ; Leos, Laura ; Conway, Adam ; Rakheja, Shaloo ; Voss, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3ec3919819046ea415cdf9cda8bfd3ea924e121b0c1f863edf1a7528ebb760053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Apertures</topic><topic>Arsenides</topic><topic>Communications systems</topic><topic>Coplanar waveguides</topic><topic>Electric fields</topic><topic>Gallium</topic><topic>Gallium arsenide</topic><topic>Gallium–arsenide (GaAs)</topic><topic>Illumination</topic><topic>Lasers</topic><topic>negative differential mobility (NDM)</topic><topic>Optical communication</topic><topic>Optical pulse compression</topic><topic>Optical switches</topic><topic>Optoelectronic devices</topic><topic>photoconductive switch</topic><topic>Pulse compression</topic><topic>Pulse duration</topic><topic>Radio frequency</topic><topic>Satellite communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dowling, Karen</creatorcontrib><creatorcontrib>Dong, Yicong</creatorcontrib><creatorcontrib>Hall, David</creatorcontrib><creatorcontrib>Mukherjee, Saptarshi</creatorcontrib><creatorcontrib>Schneider, Joseph D.</creatorcontrib><creatorcontrib>Hau-Riege, Stefan</creatorcontrib><creatorcontrib>Harrison, Sara E.</creatorcontrib><creatorcontrib>Leos, Laura</creatorcontrib><creatorcontrib>Conway, Adam</creatorcontrib><creatorcontrib>Rakheja, Shaloo</creatorcontrib><creatorcontrib>Voss, Lars</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dowling, Karen</au><au>Dong, Yicong</au><au>Hall, David</au><au>Mukherjee, Saptarshi</au><au>Schneider, Joseph D.</au><au>Hau-Riege, Stefan</au><au>Harrison, Sara E.</au><au>Leos, Laura</au><au>Conway, Adam</au><au>Rakheja, Shaloo</au><au>Voss, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse Compression Photoconductive Switching Using Negative Differential Mobility</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>69</volume><issue>2</issue><spage>590</spage><epage>596</epage><pages>590-596</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This work demonstrates a novel optoelectronic device with the potential for use as a high-frequency, high-power RF source or amplifier. The device is a gallium-arsenide coplanar waveguide with a small gap in the signal trace for optical illumination. A confined charge cloud is generated by illumination through an aperture in an opaque mask over this gap. An electric field above the threshold for negative differential mobility (NDM) enables pulse compression, which prevents the charge cloud from spreading temporally during the drift process. Due to the NDM phenomenon, the output electrical pulse is temporally compressed compared to the input optical pulse. This phenomenon is demonstrated using three different experiments with varied laser pulsewidth (28-700 ps) and device geometry (50- and 100-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>-length gaps). A 66% reduction in the full-width at half-maximum of the electrical pulse relative to the input optical pulse was demonstrated. This novel coupled optoelectronic device opens avenues for high-frequency, high-power, compact devices that could enable next-generation satellite communication systems with faster data rates and longer ranges.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3136500</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1450-5598</orcidid><orcidid>https://orcid.org/0000-0002-6349-8219</orcidid><orcidid>https://orcid.org/0000-0002-1753-9737</orcidid><orcidid>https://orcid.org/0000-0002-2258-3695</orcidid><orcidid>https://orcid.org/0000-0001-7501-275X</orcidid><orcidid>https://orcid.org/0000-0002-2840-8521</orcidid><orcidid>https://orcid.org/0000-0002-3252-3338</orcidid><orcidid>https://orcid.org/0000-0002-1138-9598</orcidid><orcidid>https://orcid.org/0000000263498219</orcidid><orcidid>https://orcid.org/0000000232523338</orcidid><orcidid>https://orcid.org/0000000228408521</orcidid><orcidid>https://orcid.org/0000000217539737</orcidid><orcidid>https://orcid.org/0000000222583695</orcidid><orcidid>https://orcid.org/0000000314505598</orcidid><orcidid>https://orcid.org/000000017501275X</orcidid><orcidid>https://orcid.org/0000000211389598</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-02, Vol.69 (2), p.590-596 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_osti_scitechconnect_1841454 |
source | IEEE Xplore |
subjects | Anodes Apertures Arsenides Communications systems Coplanar waveguides Electric fields Gallium Gallium arsenide Gallium–arsenide (GaAs) Illumination Lasers negative differential mobility (NDM) Optical communication Optical pulse compression Optical switches Optoelectronic devices photoconductive switch Pulse compression Pulse duration Radio frequency Satellite communications |
title | Pulse Compression Photoconductive Switching Using Negative Differential Mobility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20Compression%20Photoconductive%20Switching%20Using%20Negative%20Differential%20Mobility&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Dowling,%20Karen&rft.date=2022-02-01&rft.volume=69&rft.issue=2&rft.spage=590&rft.epage=596&rft.pages=590-596&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3136500&rft_dat=%3Cproquest_osti_%3E2621793604%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621793604&rft_id=info:pmid/&rft_ieee_id=9667092&rfr_iscdi=true |