Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging
Ni-rich layered LiNi Mn Co O (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high ch...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-03, Vol.18 (12), p.e2105833 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e2105833 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Lu, Yanying Zhu, Tianyu McShane, Eric McCloskey, Bryan D Chen, Guoying |
description | Ni-rich layered LiNi
Mn
Co
O
(NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast-charging electric vehicular (EV) batteries. Single-crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain-level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi
Co
Mn
O
(NMC811) samples with different morphologies: Oct-SC811 with predominating (012)-family surface and Poly-SC811 with predominating (104)-family surface. Poly-SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra-high rate of 6 C. Through detailed X-ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li
diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast-charging NMC-type cathode materials. |
doi_str_mv | 10.1002/smll.202105833 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1841442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35060327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1347-b67409c80994444a111c5abf96257539410bb31791aec5ad32815d1465f0209e3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqVw5Ygs7i67fiTxEUUtILX0AJwjx3HaoDwqO0jtvydVoHvZWe3MHD5C7hHmCMCfQlPXcw4cQSVCXJApRihYlHB9edYIE3ITwjeAQC7jazIRCiIQPJ6S9UfVbmvHUn8Mvanpqnqv6IGuW3qkaUeRDQcb9IZympp-1xUu0LLzdHHovWscXZrQ03Rn_HYouiVXpamDu_vbM_K1XHymr2y1eXlLn1fMopAxy6NYgrYJaC2HMYholclLHXEVK6ElQp4LjDUaNzwKwRNUBcpIlcBBOzEjj2NvF_oqC7bqnd3Zrm2d7TNMJErJB9N8NFnfheBdme191Rh_zBCyE7zsBC87wxsCD2Ng_5M3rjjb_2mJXwTqZWM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging</title><source>Access via Wiley Online Library</source><creator>Lu, Yanying ; Zhu, Tianyu ; McShane, Eric ; McCloskey, Bryan D ; Chen, Guoying</creator><creatorcontrib>Lu, Yanying ; Zhu, Tianyu ; McShane, Eric ; McCloskey, Bryan D ; Chen, Guoying</creatorcontrib><description>Ni-rich layered LiNi
Mn
Co
O
(NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast-charging electric vehicular (EV) batteries. Single-crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain-level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi
Co
Mn
O
(NMC811) samples with different morphologies: Oct-SC811 with predominating (012)-family surface and Poly-SC811 with predominating (104)-family surface. Poly-SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra-high rate of 6 C. Through detailed X-ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li
diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast-charging NMC-type cathode materials.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202105833</identifier><identifier>PMID: 35060327</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley & Sons)</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.e2105833</ispartof><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1347-b67409c80994444a111c5abf96257539410bb31791aec5ad32815d1465f0209e3</citedby><cites>FETCH-LOGICAL-c1347-b67409c80994444a111c5abf96257539410bb31791aec5ad32815d1465f0209e3</cites><orcidid>0000-0002-3218-2609 ; 0000000232182609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35060327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1841442$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yanying</creatorcontrib><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>McShane, Eric</creatorcontrib><creatorcontrib>McCloskey, Bryan D</creatorcontrib><creatorcontrib>Chen, Guoying</creatorcontrib><title>Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Ni-rich layered LiNi
Mn
Co
O
(NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast-charging electric vehicular (EV) batteries. Single-crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain-level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi
Co
Mn
O
(NMC811) samples with different morphologies: Oct-SC811 with predominating (012)-family surface and Poly-SC811 with predominating (104)-family surface. Poly-SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra-high rate of 6 C. Through detailed X-ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li
diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast-charging NMC-type cathode materials.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqVw5Ygs7i67fiTxEUUtILX0AJwjx3HaoDwqO0jtvydVoHvZWe3MHD5C7hHmCMCfQlPXcw4cQSVCXJApRihYlHB9edYIE3ITwjeAQC7jazIRCiIQPJ6S9UfVbmvHUn8Mvanpqnqv6IGuW3qkaUeRDQcb9IZympp-1xUu0LLzdHHovWscXZrQ03Rn_HYouiVXpamDu_vbM_K1XHymr2y1eXlLn1fMopAxy6NYgrYJaC2HMYholclLHXEVK6ElQp4LjDUaNzwKwRNUBcpIlcBBOzEjj2NvF_oqC7bqnd3Zrm2d7TNMJErJB9N8NFnfheBdme191Rh_zBCyE7zsBC87wxsCD2Ng_5M3rjjb_2mJXwTqZWM</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Lu, Yanying</creator><creator>Zhu, Tianyu</creator><creator>McShane, Eric</creator><creator>McCloskey, Bryan D</creator><creator>Chen, Guoying</creator><general>Wiley Blackwell (John Wiley & Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3218-2609</orcidid><orcidid>https://orcid.org/0000000232182609</orcidid></search><sort><creationdate>202203</creationdate><title>Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging</title><author>Lu, Yanying ; Zhu, Tianyu ; McShane, Eric ; McCloskey, Bryan D ; Chen, Guoying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1347-b67409c80994444a111c5abf96257539410bb31791aec5ad32815d1465f0209e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yanying</creatorcontrib><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>McShane, Eric</creatorcontrib><creatorcontrib>McCloskey, Bryan D</creatorcontrib><creatorcontrib>Chen, Guoying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yanying</au><au>Zhu, Tianyu</au><au>McShane, Eric</au><au>McCloskey, Bryan D</au><au>Chen, Guoying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-03</date><risdate>2022</risdate><volume>18</volume><issue>12</issue><spage>e2105833</spage><pages>e2105833-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Ni-rich layered LiNi
Mn
Co
O
(NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast-charging electric vehicular (EV) batteries. Single-crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain-level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi
Co
Mn
O
(NMC811) samples with different morphologies: Oct-SC811 with predominating (012)-family surface and Poly-SC811 with predominating (104)-family surface. Poly-SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra-high rate of 6 C. Through detailed X-ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li
diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast-charging NMC-type cathode materials.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley & Sons)</pub><pmid>35060327</pmid><doi>10.1002/smll.202105833</doi><orcidid>https://orcid.org/0000-0002-3218-2609</orcidid><orcidid>https://orcid.org/0000000232182609</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.e2105833 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_osti_scitechconnect_1841442 |
source | Access via Wiley Online Library |
title | Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Crystal%20LiNi%20x%20Mn%20y%20Co%201-%20x%20-%20y%20O%202%20Cathodes%20for%20Extreme%20Fast%20Charging&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lu,%20Yanying&rft.date=2022-03&rft.volume=18&rft.issue=12&rft.spage=e2105833&rft.pages=e2105833-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202105833&rft_dat=%3Cpubmed_osti_%3E35060327%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35060327&rfr_iscdi=true |