Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging

Ni-rich layered LiNi Mn Co O (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-03, Vol.18 (12), p.e2105833
Hauptverfasser: Lu, Yanying, Zhu, Tianyu, McShane, Eric, McCloskey, Bryan D, Chen, Guoying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e2105833
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Lu, Yanying
Zhu, Tianyu
McShane, Eric
McCloskey, Bryan D
Chen, Guoying
description Ni-rich layered LiNi Mn Co O (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast-charging electric vehicular (EV) batteries. Single-crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain-level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi Co Mn O (NMC811) samples with different morphologies: Oct-SC811 with predominating (012)-family surface and Poly-SC811 with predominating (104)-family surface. Poly-SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra-high rate of 6 C. Through detailed X-ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast-charging NMC-type cathode materials.
doi_str_mv 10.1002/smll.202105833
format Article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1841442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35060327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1347-b67409c80994444a111c5abf96257539410bb31791aec5ad32815d1465f0209e3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqVw5Ygs7i67fiTxEUUtILX0AJwjx3HaoDwqO0jtvydVoHvZWe3MHD5C7hHmCMCfQlPXcw4cQSVCXJApRihYlHB9edYIE3ITwjeAQC7jazIRCiIQPJ6S9UfVbmvHUn8Mvanpqnqv6IGuW3qkaUeRDQcb9IZympp-1xUu0LLzdHHovWscXZrQ03Rn_HYouiVXpamDu_vbM_K1XHymr2y1eXlLn1fMopAxy6NYgrYJaC2HMYholclLHXEVK6ElQp4LjDUaNzwKwRNUBcpIlcBBOzEjj2NvF_oqC7bqnd3Zrm2d7TNMJErJB9N8NFnfheBdme191Rh_zBCyE7zsBC87wxsCD2Ng_5M3rjjb_2mJXwTqZWM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging</title><source>Access via Wiley Online Library</source><creator>Lu, Yanying ; Zhu, Tianyu ; McShane, Eric ; McCloskey, Bryan D ; Chen, Guoying</creator><creatorcontrib>Lu, Yanying ; Zhu, Tianyu ; McShane, Eric ; McCloskey, Bryan D ; Chen, Guoying</creatorcontrib><description>Ni-rich layered LiNi Mn Co O (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast-charging electric vehicular (EV) batteries. Single-crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain-level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi Co Mn O (NMC811) samples with different morphologies: Oct-SC811 with predominating (012)-family surface and Poly-SC811 with predominating (104)-family surface. Poly-SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra-high rate of 6 C. Through detailed X-ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast-charging NMC-type cathode materials.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202105833</identifier><identifier>PMID: 35060327</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley &amp; Sons)</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.e2105833</ispartof><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1347-b67409c80994444a111c5abf96257539410bb31791aec5ad32815d1465f0209e3</citedby><cites>FETCH-LOGICAL-c1347-b67409c80994444a111c5abf96257539410bb31791aec5ad32815d1465f0209e3</cites><orcidid>0000-0002-3218-2609 ; 0000000232182609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35060327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1841442$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yanying</creatorcontrib><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>McShane, Eric</creatorcontrib><creatorcontrib>McCloskey, Bryan D</creatorcontrib><creatorcontrib>Chen, Guoying</creatorcontrib><title>Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Ni-rich layered LiNi Mn Co O (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast-charging electric vehicular (EV) batteries. Single-crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain-level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi Co Mn O (NMC811) samples with different morphologies: Oct-SC811 with predominating (012)-family surface and Poly-SC811 with predominating (104)-family surface. Poly-SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra-high rate of 6 C. Through detailed X-ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast-charging NMC-type cathode materials.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqVw5Ygs7i67fiTxEUUtILX0AJwjx3HaoDwqO0jtvydVoHvZWe3MHD5C7hHmCMCfQlPXcw4cQSVCXJApRihYlHB9edYIE3ITwjeAQC7jazIRCiIQPJ6S9UfVbmvHUn8Mvanpqnqv6IGuW3qkaUeRDQcb9IZympp-1xUu0LLzdHHovWscXZrQ03Rn_HYouiVXpamDu_vbM_K1XHymr2y1eXlLn1fMopAxy6NYgrYJaC2HMYholclLHXEVK6ElQp4LjDUaNzwKwRNUBcpIlcBBOzEjj2NvF_oqC7bqnd3Zrm2d7TNMJErJB9N8NFnfheBdme191Rh_zBCyE7zsBC87wxsCD2Ng_5M3rjjb_2mJXwTqZWM</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Lu, Yanying</creator><creator>Zhu, Tianyu</creator><creator>McShane, Eric</creator><creator>McCloskey, Bryan D</creator><creator>Chen, Guoying</creator><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3218-2609</orcidid><orcidid>https://orcid.org/0000000232182609</orcidid></search><sort><creationdate>202203</creationdate><title>Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging</title><author>Lu, Yanying ; Zhu, Tianyu ; McShane, Eric ; McCloskey, Bryan D ; Chen, Guoying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1347-b67409c80994444a111c5abf96257539410bb31791aec5ad32815d1465f0209e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yanying</creatorcontrib><creatorcontrib>Zhu, Tianyu</creatorcontrib><creatorcontrib>McShane, Eric</creatorcontrib><creatorcontrib>McCloskey, Bryan D</creatorcontrib><creatorcontrib>Chen, Guoying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yanying</au><au>Zhu, Tianyu</au><au>McShane, Eric</au><au>McCloskey, Bryan D</au><au>Chen, Guoying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-03</date><risdate>2022</risdate><volume>18</volume><issue>12</issue><spage>e2105833</spage><pages>e2105833-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Ni-rich layered LiNi Mn Co O (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast-charging electric vehicular (EV) batteries. Single-crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain-level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi Co Mn O (NMC811) samples with different morphologies: Oct-SC811 with predominating (012)-family surface and Poly-SC811 with predominating (104)-family surface. Poly-SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra-high rate of 6 C. Through detailed X-ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast-charging NMC-type cathode materials.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley &amp; Sons)</pub><pmid>35060327</pmid><doi>10.1002/smll.202105833</doi><orcidid>https://orcid.org/0000-0002-3218-2609</orcidid><orcidid>https://orcid.org/0000000232182609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.e2105833
issn 1613-6810
1613-6829
language eng
recordid cdi_osti_scitechconnect_1841442
source Access via Wiley Online Library
title Single-Crystal LiNi x Mn y Co 1- x - y O 2 Cathodes for Extreme Fast Charging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Crystal%20LiNi%20x%20Mn%20y%20Co%201-%20x%20-%20y%20O%202%20Cathodes%20for%20Extreme%20Fast%20Charging&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lu,%20Yanying&rft.date=2022-03&rft.volume=18&rft.issue=12&rft.spage=e2105833&rft.pages=e2105833-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202105833&rft_dat=%3Cpubmed_osti_%3E35060327%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35060327&rfr_iscdi=true