The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction
Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with i...
Gespeichert in:
Veröffentlicht in: | Nature materials 2021-11, Vol.20 (11), p.1519-1524 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1524 |
---|---|
container_issue | 11 |
container_start_page | 1519 |
container_title | Nature materials |
container_volume | 20 |
creator | Sanchez, Joshua J. Malinowski, Paul Mutch, Joshua Liu, Jian Kim, J.-W. Ryan, Philip J. Chu, Jiun-Haw |
description | Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe
0.96
Co
0.04
)
2
As
2
. The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity.
The authors combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition of Co-doped BaFe
2
As
2
. |
doi_str_mv | 10.1038/s41563-021-01082-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1840899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566045143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-3bfbba04938dc78eee45391712351a63e86fab6a338a57250a5af3b72eda716f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUha0KREvLC3SBLNiwCfg_nmVV8SdVYlOk7qwb56aTKmOntrOYHe_AG_IkuM0UJBasbNnfOT6-h5Bzzt5zJu2HrLg2smGCN4wzKxp1RE64ak2jjGHPDnvOhTgmL3O-Y5XU2rwgx1IpZazRJ2S-3iItCUKeYyq_fvzMJS2-LAkm6mNKWM9Dj8EjBZ9izrRUQcAdlNHTeQv5IB_LGAOdU-ywp92e4gS5RHrTJNjTfhyGBP4BOSPPB5gyvjqsp-T7p4_Xl1-aq2-fv15eXDW-RiuN7IauA6Y20va-tYiotNzwlgupORiJ1gzQGZDSgm6FZqBhkF0rsIeWm0Gekjerb8xldNmPBf3WxxDQF8etYnazqdC7Faq57xfMxe3G7HGaIGBcshO6DlJprmRF3_6D3sUlhfoFJwyXzNQMrFJipR5nlXBwcxp3kPaOM_dQmltLc7UK91iaU1X0-mC9dDvs_0ieWqqAXIFcr8Itpr9v_8f2N3CgpA4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613062500</pqid></control><display><type>article</type><title>The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Sanchez, Joshua J. ; Malinowski, Paul ; Mutch, Joshua ; Liu, Jian ; Kim, J.-W. ; Ryan, Philip J. ; Chu, Jiun-Haw</creator><creatorcontrib>Sanchez, Joshua J. ; Malinowski, Paul ; Mutch, Joshua ; Liu, Jian ; Kim, J.-W. ; Ryan, Philip J. ; Chu, Jiun-Haw ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe
0.96
Co
0.04
)
2
As
2
. The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity.
The authors combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition of Co-doped BaFe
2
As
2
.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-01082-4</identifier><identifier>PMID: 34446865</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/995 ; Anisotropy ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Couplings ; Electrical resistivity ; Electronics ; Fe pnictide ; Group 5A compounds ; MATERIALS SCIENCE ; Nanotechnology ; nematic order ; Optical and Electronic Materials ; Order parameters ; phase transition ; Phase transitions ; Shear modulus ; Superconductivity ; Temperature ; Temperature dependence ; uniaxial strain ; X-Ray Diffraction</subject><ispartof>Nature materials, 2021-11, Vol.20 (11), p.1519-1524</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-3bfbba04938dc78eee45391712351a63e86fab6a338a57250a5af3b72eda716f3</citedby><cites>FETCH-LOGICAL-c446t-3bfbba04938dc78eee45391712351a63e86fab6a338a57250a5af3b72eda716f3</cites><orcidid>0000-0003-4739-7968 ; 0000-0001-6222-1210 ; 0000-0002-5773-6188 ; 0000-0001-7962-2547 ; 0000-0001-9511-3398 ; 0000-0001-9641-2947 ; 0000000347397968 ; 0000000257736188 ; 0000000196412947 ; 0000000179622547 ; 0000000195113398 ; 0000000162221210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-01082-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-01082-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34446865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1840899$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, Joshua J.</creatorcontrib><creatorcontrib>Malinowski, Paul</creatorcontrib><creatorcontrib>Mutch, Joshua</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Kim, J.-W.</creatorcontrib><creatorcontrib>Ryan, Philip J.</creatorcontrib><creatorcontrib>Chu, Jiun-Haw</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe
0.96
Co
0.04
)
2
As
2
. The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity.
The authors combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition of Co-doped BaFe
2
As
2
.</description><subject>639/766/119/1003</subject><subject>639/766/119/995</subject><subject>Anisotropy</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Couplings</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Fe pnictide</subject><subject>Group 5A compounds</subject><subject>MATERIALS SCIENCE</subject><subject>Nanotechnology</subject><subject>nematic order</subject><subject>Optical and Electronic Materials</subject><subject>Order parameters</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Shear modulus</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>uniaxial strain</subject><subject>X-Ray Diffraction</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUha0KREvLC3SBLNiwCfg_nmVV8SdVYlOk7qwb56aTKmOntrOYHe_AG_IkuM0UJBasbNnfOT6-h5Bzzt5zJu2HrLg2smGCN4wzKxp1RE64ak2jjGHPDnvOhTgmL3O-Y5XU2rwgx1IpZazRJ2S-3iItCUKeYyq_fvzMJS2-LAkm6mNKWM9Dj8EjBZ9izrRUQcAdlNHTeQv5IB_LGAOdU-ywp92e4gS5RHrTJNjTfhyGBP4BOSPPB5gyvjqsp-T7p4_Xl1-aq2-fv15eXDW-RiuN7IauA6Y20va-tYiotNzwlgupORiJ1gzQGZDSgm6FZqBhkF0rsIeWm0Gekjerb8xldNmPBf3WxxDQF8etYnazqdC7Faq57xfMxe3G7HGaIGBcshO6DlJprmRF3_6D3sUlhfoFJwyXzNQMrFJipR5nlXBwcxp3kPaOM_dQmltLc7UK91iaU1X0-mC9dDvs_0ieWqqAXIFcr8Itpr9v_8f2N3CgpA4</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sanchez, Joshua J.</creator><creator>Malinowski, Paul</creator><creator>Mutch, Joshua</creator><creator>Liu, Jian</creator><creator>Kim, J.-W.</creator><creator>Ryan, Philip J.</creator><creator>Chu, Jiun-Haw</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4739-7968</orcidid><orcidid>https://orcid.org/0000-0001-6222-1210</orcidid><orcidid>https://orcid.org/0000-0002-5773-6188</orcidid><orcidid>https://orcid.org/0000-0001-7962-2547</orcidid><orcidid>https://orcid.org/0000-0001-9511-3398</orcidid><orcidid>https://orcid.org/0000-0001-9641-2947</orcidid><orcidid>https://orcid.org/0000000347397968</orcidid><orcidid>https://orcid.org/0000000257736188</orcidid><orcidid>https://orcid.org/0000000196412947</orcidid><orcidid>https://orcid.org/0000000179622547</orcidid><orcidid>https://orcid.org/0000000195113398</orcidid><orcidid>https://orcid.org/0000000162221210</orcidid></search><sort><creationdate>20211101</creationdate><title>The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction</title><author>Sanchez, Joshua J. ; Malinowski, Paul ; Mutch, Joshua ; Liu, Jian ; Kim, J.-W. ; Ryan, Philip J. ; Chu, Jiun-Haw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-3bfbba04938dc78eee45391712351a63e86fab6a338a57250a5af3b72eda716f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/995</topic><topic>Anisotropy</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Couplings</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Fe pnictide</topic><topic>Group 5A compounds</topic><topic>MATERIALS SCIENCE</topic><topic>Nanotechnology</topic><topic>nematic order</topic><topic>Optical and Electronic Materials</topic><topic>Order parameters</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Shear modulus</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>uniaxial strain</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Joshua J.</creatorcontrib><creatorcontrib>Malinowski, Paul</creatorcontrib><creatorcontrib>Mutch, Joshua</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Kim, J.-W.</creatorcontrib><creatorcontrib>Ryan, Philip J.</creatorcontrib><creatorcontrib>Chu, Jiun-Haw</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Joshua J.</au><au>Malinowski, Paul</au><au>Mutch, Joshua</au><au>Liu, Jian</au><au>Kim, J.-W.</au><au>Ryan, Philip J.</au><au>Chu, Jiun-Haw</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><spage>1519</spage><epage>1524</epage><pages>1519-1524</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe
0.96
Co
0.04
)
2
As
2
. The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity.
The authors combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition of Co-doped BaFe
2
As
2
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34446865</pmid><doi>10.1038/s41563-021-01082-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4739-7968</orcidid><orcidid>https://orcid.org/0000-0001-6222-1210</orcidid><orcidid>https://orcid.org/0000-0002-5773-6188</orcidid><orcidid>https://orcid.org/0000-0001-7962-2547</orcidid><orcidid>https://orcid.org/0000-0001-9511-3398</orcidid><orcidid>https://orcid.org/0000-0001-9641-2947</orcidid><orcidid>https://orcid.org/0000000347397968</orcidid><orcidid>https://orcid.org/0000000257736188</orcidid><orcidid>https://orcid.org/0000000196412947</orcidid><orcidid>https://orcid.org/0000000179622547</orcidid><orcidid>https://orcid.org/0000000195113398</orcidid><orcidid>https://orcid.org/0000000162221210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2021-11, Vol.20 (11), p.1519-1524 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1840899 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 639/766/119/1003 639/766/119/995 Anisotropy Biomaterials Chemistry and Materials Science Condensed Matter Physics Couplings Electrical resistivity Electronics Fe pnictide Group 5A compounds MATERIALS SCIENCE Nanotechnology nematic order Optical and Electronic Materials Order parameters phase transition Phase transitions Shear modulus Superconductivity Temperature Temperature dependence uniaxial strain X-Ray Diffraction |
title | The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transport%E2%80%93structural%20correspondence%20across%20the%20nematic%20phase%20transition%20probed%20by%20elasto%20X-ray%20diffraction&rft.jtitle=Nature%20materials&rft.au=Sanchez,%20Joshua%20J.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-11-01&rft.volume=20&rft.issue=11&rft.spage=1519&rft.epage=1524&rft.pages=1519-1524&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-01082-4&rft_dat=%3Cproquest_osti_%3E2566045143%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613062500&rft_id=info:pmid/34446865&rfr_iscdi=true |