The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction

Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2021-11, Vol.20 (11), p.1519-1524
Hauptverfasser: Sanchez, Joshua J., Malinowski, Paul, Mutch, Joshua, Liu, Jian, Kim, J.-W., Ryan, Philip J., Chu, Jiun-Haw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1524
container_issue 11
container_start_page 1519
container_title Nature materials
container_volume 20
creator Sanchez, Joshua J.
Malinowski, Paul
Mutch, Joshua
Liu, Jian
Kim, J.-W.
Ryan, Philip J.
Chu, Jiun-Haw
description Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe 0.96 Co 0.04 ) 2 As 2 . The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity. The authors combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition of Co-doped BaFe 2 As 2 .
doi_str_mv 10.1038/s41563-021-01082-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1840899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566045143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-3bfbba04938dc78eee45391712351a63e86fab6a338a57250a5af3b72eda716f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUha0KREvLC3SBLNiwCfg_nmVV8SdVYlOk7qwb56aTKmOntrOYHe_AG_IkuM0UJBasbNnfOT6-h5Bzzt5zJu2HrLg2smGCN4wzKxp1RE64ak2jjGHPDnvOhTgmL3O-Y5XU2rwgx1IpZazRJ2S-3iItCUKeYyq_fvzMJS2-LAkm6mNKWM9Dj8EjBZ9izrRUQcAdlNHTeQv5IB_LGAOdU-ywp92e4gS5RHrTJNjTfhyGBP4BOSPPB5gyvjqsp-T7p4_Xl1-aq2-fv15eXDW-RiuN7IauA6Y20va-tYiotNzwlgupORiJ1gzQGZDSgm6FZqBhkF0rsIeWm0Gekjerb8xldNmPBf3WxxDQF8etYnazqdC7Faq57xfMxe3G7HGaIGBcshO6DlJprmRF3_6D3sUlhfoFJwyXzNQMrFJipR5nlXBwcxp3kPaOM_dQmltLc7UK91iaU1X0-mC9dDvs_0ieWqqAXIFcr8Itpr9v_8f2N3CgpA4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613062500</pqid></control><display><type>article</type><title>The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Sanchez, Joshua J. ; Malinowski, Paul ; Mutch, Joshua ; Liu, Jian ; Kim, J.-W. ; Ryan, Philip J. ; Chu, Jiun-Haw</creator><creatorcontrib>Sanchez, Joshua J. ; Malinowski, Paul ; Mutch, Joshua ; Liu, Jian ; Kim, J.-W. ; Ryan, Philip J. ; Chu, Jiun-Haw ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe 0.96 Co 0.04 ) 2 As 2 . The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity. The authors combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition of Co-doped BaFe 2 As 2 .</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-01082-4</identifier><identifier>PMID: 34446865</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/995 ; Anisotropy ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Couplings ; Electrical resistivity ; Electronics ; Fe pnictide ; Group 5A compounds ; MATERIALS SCIENCE ; Nanotechnology ; nematic order ; Optical and Electronic Materials ; Order parameters ; phase transition ; Phase transitions ; Shear modulus ; Superconductivity ; Temperature ; Temperature dependence ; uniaxial strain ; X-Ray Diffraction</subject><ispartof>Nature materials, 2021-11, Vol.20 (11), p.1519-1524</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-3bfbba04938dc78eee45391712351a63e86fab6a338a57250a5af3b72eda716f3</citedby><cites>FETCH-LOGICAL-c446t-3bfbba04938dc78eee45391712351a63e86fab6a338a57250a5af3b72eda716f3</cites><orcidid>0000-0003-4739-7968 ; 0000-0001-6222-1210 ; 0000-0002-5773-6188 ; 0000-0001-7962-2547 ; 0000-0001-9511-3398 ; 0000-0001-9641-2947 ; 0000000347397968 ; 0000000257736188 ; 0000000196412947 ; 0000000179622547 ; 0000000195113398 ; 0000000162221210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-01082-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-01082-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34446865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1840899$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, Joshua J.</creatorcontrib><creatorcontrib>Malinowski, Paul</creatorcontrib><creatorcontrib>Mutch, Joshua</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Kim, J.-W.</creatorcontrib><creatorcontrib>Ryan, Philip J.</creatorcontrib><creatorcontrib>Chu, Jiun-Haw</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe 0.96 Co 0.04 ) 2 As 2 . The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity. The authors combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition of Co-doped BaFe 2 As 2 .</description><subject>639/766/119/1003</subject><subject>639/766/119/995</subject><subject>Anisotropy</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Couplings</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Fe pnictide</subject><subject>Group 5A compounds</subject><subject>MATERIALS SCIENCE</subject><subject>Nanotechnology</subject><subject>nematic order</subject><subject>Optical and Electronic Materials</subject><subject>Order parameters</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Shear modulus</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>uniaxial strain</subject><subject>X-Ray Diffraction</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUha0KREvLC3SBLNiwCfg_nmVV8SdVYlOk7qwb56aTKmOntrOYHe_AG_IkuM0UJBasbNnfOT6-h5Bzzt5zJu2HrLg2smGCN4wzKxp1RE64ak2jjGHPDnvOhTgmL3O-Y5XU2rwgx1IpZazRJ2S-3iItCUKeYyq_fvzMJS2-LAkm6mNKWM9Dj8EjBZ9izrRUQcAdlNHTeQv5IB_LGAOdU-ywp92e4gS5RHrTJNjTfhyGBP4BOSPPB5gyvjqsp-T7p4_Xl1-aq2-fv15eXDW-RiuN7IauA6Y20va-tYiotNzwlgupORiJ1gzQGZDSgm6FZqBhkF0rsIeWm0Gekjerb8xldNmPBf3WxxDQF8etYnazqdC7Faq57xfMxe3G7HGaIGBcshO6DlJprmRF3_6D3sUlhfoFJwyXzNQMrFJipR5nlXBwcxp3kPaOM_dQmltLc7UK91iaU1X0-mC9dDvs_0ieWqqAXIFcr8Itpr9v_8f2N3CgpA4</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sanchez, Joshua J.</creator><creator>Malinowski, Paul</creator><creator>Mutch, Joshua</creator><creator>Liu, Jian</creator><creator>Kim, J.-W.</creator><creator>Ryan, Philip J.</creator><creator>Chu, Jiun-Haw</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4739-7968</orcidid><orcidid>https://orcid.org/0000-0001-6222-1210</orcidid><orcidid>https://orcid.org/0000-0002-5773-6188</orcidid><orcidid>https://orcid.org/0000-0001-7962-2547</orcidid><orcidid>https://orcid.org/0000-0001-9511-3398</orcidid><orcidid>https://orcid.org/0000-0001-9641-2947</orcidid><orcidid>https://orcid.org/0000000347397968</orcidid><orcidid>https://orcid.org/0000000257736188</orcidid><orcidid>https://orcid.org/0000000196412947</orcidid><orcidid>https://orcid.org/0000000179622547</orcidid><orcidid>https://orcid.org/0000000195113398</orcidid><orcidid>https://orcid.org/0000000162221210</orcidid></search><sort><creationdate>20211101</creationdate><title>The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction</title><author>Sanchez, Joshua J. ; Malinowski, Paul ; Mutch, Joshua ; Liu, Jian ; Kim, J.-W. ; Ryan, Philip J. ; Chu, Jiun-Haw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-3bfbba04938dc78eee45391712351a63e86fab6a338a57250a5af3b72eda716f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/995</topic><topic>Anisotropy</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Couplings</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Fe pnictide</topic><topic>Group 5A compounds</topic><topic>MATERIALS SCIENCE</topic><topic>Nanotechnology</topic><topic>nematic order</topic><topic>Optical and Electronic Materials</topic><topic>Order parameters</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Shear modulus</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>uniaxial strain</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Joshua J.</creatorcontrib><creatorcontrib>Malinowski, Paul</creatorcontrib><creatorcontrib>Mutch, Joshua</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Kim, J.-W.</creatorcontrib><creatorcontrib>Ryan, Philip J.</creatorcontrib><creatorcontrib>Chu, Jiun-Haw</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Joshua J.</au><au>Malinowski, Paul</au><au>Mutch, Joshua</au><au>Liu, Jian</au><au>Kim, J.-W.</au><au>Ryan, Philip J.</au><au>Chu, Jiun-Haw</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><spage>1519</spage><epage>1524</epage><pages>1519-1524</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain (elasto X-ray diffraction) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of Ba(Fe 0.96 Co 0.04 ) 2 As 2 . The ratio of transport to structural quantities is nearly temperature independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto X-ray diffraction is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of the mean-field description reveals the intertwined nature of nematicity. The authors combine simultaneous transport and X-ray diffraction measurements with in-situ tunable strain to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition of Co-doped BaFe 2 As 2 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34446865</pmid><doi>10.1038/s41563-021-01082-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4739-7968</orcidid><orcidid>https://orcid.org/0000-0001-6222-1210</orcidid><orcidid>https://orcid.org/0000-0002-5773-6188</orcidid><orcidid>https://orcid.org/0000-0001-7962-2547</orcidid><orcidid>https://orcid.org/0000-0001-9511-3398</orcidid><orcidid>https://orcid.org/0000-0001-9641-2947</orcidid><orcidid>https://orcid.org/0000000347397968</orcidid><orcidid>https://orcid.org/0000000257736188</orcidid><orcidid>https://orcid.org/0000000196412947</orcidid><orcidid>https://orcid.org/0000000179622547</orcidid><orcidid>https://orcid.org/0000000195113398</orcidid><orcidid>https://orcid.org/0000000162221210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2021-11, Vol.20 (11), p.1519-1524
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1840899
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 639/766/119/1003
639/766/119/995
Anisotropy
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Couplings
Electrical resistivity
Electronics
Fe pnictide
Group 5A compounds
MATERIALS SCIENCE
Nanotechnology
nematic order
Optical and Electronic Materials
Order parameters
phase transition
Phase transitions
Shear modulus
Superconductivity
Temperature
Temperature dependence
uniaxial strain
X-Ray Diffraction
title The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transport%E2%80%93structural%20correspondence%20across%20the%20nematic%20phase%20transition%20probed%20by%20elasto%20X-ray%20diffraction&rft.jtitle=Nature%20materials&rft.au=Sanchez,%20Joshua%20J.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-11-01&rft.volume=20&rft.issue=11&rft.spage=1519&rft.epage=1524&rft.pages=1519-1524&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-01082-4&rft_dat=%3Cproquest_osti_%3E2566045143%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2613062500&rft_id=info:pmid/34446865&rfr_iscdi=true