Role of quantum ion dynamics in the melting of lithium
The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pres...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-09, Vol.94 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physical review. B |
container_volume | 94 |
creator | Elatresh, S. F. Bonev, S. A. Gregoryanz, E. Ashcroft, N. W. |
description | The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pressure ranges and are in excellent agreement with experimental data around 50 GPa. They predict the resumption of a positive melting slope at higher pressure. Quantum corrections to individual energy terms are far more significant than their net effect on the melting temperatures near 50 GPa, even though lithium behaves as a quantum solid at this pressure. The scales of these corrections increase with compression. Furthermore, a case is made for the possibility for anomalous melting at much higher pressures, where quantum ion dynamics are expected to play a prominent role. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1840138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1840138</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18401383</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgChbtOxzuhautsZlFcRb3UmJqTpILkuvg24sgzk7_P3wzVWxbbSpjtJn_fodLVeb8QMRao9mjKZS-pOAgjfCcBpYpAiWG24uHSDYDMYh3EF0Q4vuHBRJPU1yrxTiE7MpvV2pzOl4P5yploT5bEme9TczOSl93LdZN1_yF3rXsNw8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Role of quantum ion dynamics in the melting of lithium</title><source>American Physical Society Journals</source><creator>Elatresh, S. F. ; Bonev, S. A. ; Gregoryanz, E. ; Ashcroft, N. W.</creator><creatorcontrib>Elatresh, S. F. ; Bonev, S. A. ; Gregoryanz, E. ; Ashcroft, N. W. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pressure ranges and are in excellent agreement with experimental data around 50 GPa. They predict the resumption of a positive melting slope at higher pressure. Quantum corrections to individual energy terms are far more significant than their net effect on the melting temperatures near 50 GPa, even though lithium behaves as a quantum solid at this pressure. The scales of these corrections increase with compression. Furthermore, a case is made for the possibility for anomalous melting at much higher pressures, where quantum ion dynamics are expected to play a prominent role.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; First-principles calculations ; Liquid-solid phase transition ; Molecular dynamics ; Phase diagrams ; Pressure effects ; Solid-solid transformations ; Thermal properties</subject><ispartof>Physical review. B, 2016-09, Vol.94 (10)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1840138$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elatresh, S. F.</creatorcontrib><creatorcontrib>Bonev, S. A.</creatorcontrib><creatorcontrib>Gregoryanz, E.</creatorcontrib><creatorcontrib>Ashcroft, N. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Role of quantum ion dynamics in the melting of lithium</title><title>Physical review. B</title><description>The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pressure ranges and are in excellent agreement with experimental data around 50 GPa. They predict the resumption of a positive melting slope at higher pressure. Quantum corrections to individual energy terms are far more significant than their net effect on the melting temperatures near 50 GPa, even though lithium behaves as a quantum solid at this pressure. The scales of these corrections increase with compression. Furthermore, a case is made for the possibility for anomalous melting at much higher pressures, where quantum ion dynamics are expected to play a prominent role.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>First-principles calculations</subject><subject>Liquid-solid phase transition</subject><subject>Molecular dynamics</subject><subject>Phase diagrams</subject><subject>Pressure effects</subject><subject>Solid-solid transformations</subject><subject>Thermal properties</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNyrEKwjAQgOEgChbtOxzuhautsZlFcRb3UmJqTpILkuvg24sgzk7_P3wzVWxbbSpjtJn_fodLVeb8QMRao9mjKZS-pOAgjfCcBpYpAiWG24uHSDYDMYh3EF0Q4vuHBRJPU1yrxTiE7MpvV2pzOl4P5yploT5bEme9TczOSl93LdZN1_yF3rXsNw8</recordid><startdate>20160909</startdate><enddate>20160909</enddate><creator>Elatresh, S. F.</creator><creator>Bonev, S. A.</creator><creator>Gregoryanz, E.</creator><creator>Ashcroft, N. W.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160909</creationdate><title>Role of quantum ion dynamics in the melting of lithium</title><author>Elatresh, S. F. ; Bonev, S. A. ; Gregoryanz, E. ; Ashcroft, N. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18401383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>First-principles calculations</topic><topic>Liquid-solid phase transition</topic><topic>Molecular dynamics</topic><topic>Phase diagrams</topic><topic>Pressure effects</topic><topic>Solid-solid transformations</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elatresh, S. F.</creatorcontrib><creatorcontrib>Bonev, S. A.</creatorcontrib><creatorcontrib>Gregoryanz, E.</creatorcontrib><creatorcontrib>Ashcroft, N. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elatresh, S. F.</au><au>Bonev, S. A.</au><au>Gregoryanz, E.</au><au>Ashcroft, N. W.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of quantum ion dynamics in the melting of lithium</atitle><jtitle>Physical review. B</jtitle><date>2016-09-09</date><risdate>2016</risdate><volume>94</volume><issue>10</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pressure ranges and are in excellent agreement with experimental data around 50 GPa. They predict the resumption of a positive melting slope at higher pressure. Quantum corrections to individual energy terms are far more significant than their net effect on the melting temperatures near 50 GPa, even though lithium behaves as a quantum solid at this pressure. The scales of these corrections increase with compression. Furthermore, a case is made for the possibility for anomalous melting at much higher pressures, where quantum ion dynamics are expected to play a prominent role.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-09, Vol.94 (10) |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1840138 |
source | American Physical Society Journals |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY First-principles calculations Liquid-solid phase transition Molecular dynamics Phase diagrams Pressure effects Solid-solid transformations Thermal properties |
title | Role of quantum ion dynamics in the melting of lithium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20quantum%20ion%20dynamics%20in%20the%20melting%20of%20lithium&rft.jtitle=Physical%20review.%20B&rft.au=Elatresh,%20S.%20F.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2016-09-09&rft.volume=94&rft.issue=10&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/&rft_dat=%3Costi%3E1840138%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |