Role of quantum ion dynamics in the melting of lithium

The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-09, Vol.94 (10)
Hauptverfasser: Elatresh, S. F., Bonev, S. A., Gregoryanz, E., Ashcroft, N. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical review. B
container_volume 94
creator Elatresh, S. F.
Bonev, S. A.
Gregoryanz, E.
Ashcroft, N. W.
description The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pressure ranges and are in excellent agreement with experimental data around 50 GPa. They predict the resumption of a positive melting slope at higher pressure. Quantum corrections to individual energy terms are far more significant than their net effect on the melting temperatures near 50 GPa, even though lithium behaves as a quantum solid at this pressure. The scales of these corrections increase with compression. Furthermore, a case is made for the possibility for anomalous melting at much higher pressures, where quantum ion dynamics are expected to play a prominent role.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1840138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1840138</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18401383</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgChbtOxzuhautsZlFcRb3UmJqTpILkuvg24sgzk7_P3wzVWxbbSpjtJn_fodLVeb8QMRao9mjKZS-pOAgjfCcBpYpAiWG24uHSDYDMYh3EF0Q4vuHBRJPU1yrxTiE7MpvV2pzOl4P5yploT5bEme9TczOSl93LdZN1_yF3rXsNw8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Role of quantum ion dynamics in the melting of lithium</title><source>American Physical Society Journals</source><creator>Elatresh, S. F. ; Bonev, S. A. ; Gregoryanz, E. ; Ashcroft, N. W.</creator><creatorcontrib>Elatresh, S. F. ; Bonev, S. A. ; Gregoryanz, E. ; Ashcroft, N. W. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pressure ranges and are in excellent agreement with experimental data around 50 GPa. They predict the resumption of a positive melting slope at higher pressure. Quantum corrections to individual energy terms are far more significant than their net effect on the melting temperatures near 50 GPa, even though lithium behaves as a quantum solid at this pressure. The scales of these corrections increase with compression. Furthermore, a case is made for the possibility for anomalous melting at much higher pressures, where quantum ion dynamics are expected to play a prominent role.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; First-principles calculations ; Liquid-solid phase transition ; Molecular dynamics ; Phase diagrams ; Pressure effects ; Solid-solid transformations ; Thermal properties</subject><ispartof>Physical review. B, 2016-09, Vol.94 (10)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1840138$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elatresh, S. F.</creatorcontrib><creatorcontrib>Bonev, S. A.</creatorcontrib><creatorcontrib>Gregoryanz, E.</creatorcontrib><creatorcontrib>Ashcroft, N. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Role of quantum ion dynamics in the melting of lithium</title><title>Physical review. B</title><description>The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pressure ranges and are in excellent agreement with experimental data around 50 GPa. They predict the resumption of a positive melting slope at higher pressure. Quantum corrections to individual energy terms are far more significant than their net effect on the melting temperatures near 50 GPa, even though lithium behaves as a quantum solid at this pressure. The scales of these corrections increase with compression. Furthermore, a case is made for the possibility for anomalous melting at much higher pressures, where quantum ion dynamics are expected to play a prominent role.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>First-principles calculations</subject><subject>Liquid-solid phase transition</subject><subject>Molecular dynamics</subject><subject>Phase diagrams</subject><subject>Pressure effects</subject><subject>Solid-solid transformations</subject><subject>Thermal properties</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNyrEKwjAQgOEgChbtOxzuhautsZlFcRb3UmJqTpILkuvg24sgzk7_P3wzVWxbbSpjtJn_fodLVeb8QMRao9mjKZS-pOAgjfCcBpYpAiWG24uHSDYDMYh3EF0Q4vuHBRJPU1yrxTiE7MpvV2pzOl4P5yploT5bEme9TczOSl93LdZN1_yF3rXsNw8</recordid><startdate>20160909</startdate><enddate>20160909</enddate><creator>Elatresh, S. F.</creator><creator>Bonev, S. A.</creator><creator>Gregoryanz, E.</creator><creator>Ashcroft, N. W.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160909</creationdate><title>Role of quantum ion dynamics in the melting of lithium</title><author>Elatresh, S. F. ; Bonev, S. A. ; Gregoryanz, E. ; Ashcroft, N. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18401383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>First-principles calculations</topic><topic>Liquid-solid phase transition</topic><topic>Molecular dynamics</topic><topic>Phase diagrams</topic><topic>Pressure effects</topic><topic>Solid-solid transformations</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elatresh, S. F.</creatorcontrib><creatorcontrib>Bonev, S. A.</creatorcontrib><creatorcontrib>Gregoryanz, E.</creatorcontrib><creatorcontrib>Ashcroft, N. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elatresh, S. F.</au><au>Bonev, S. A.</au><au>Gregoryanz, E.</au><au>Ashcroft, N. W.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of quantum ion dynamics in the melting of lithium</atitle><jtitle>Physical review. B</jtitle><date>2016-09-09</date><risdate>2016</risdate><volume>94</volume><issue>10</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The role of quantum ion dynamics in the low melting temperatures of Li is investigated from first principles theory. Free energies of solid and liquid phases are obtained at the classical and quantum ion levels. The results are used to determine the Li melting curve in the 40–60 and 110–150 GPa pressure ranges and are in excellent agreement with experimental data around 50 GPa. They predict the resumption of a positive melting slope at higher pressure. Quantum corrections to individual energy terms are far more significant than their net effect on the melting temperatures near 50 GPa, even though lithium behaves as a quantum solid at this pressure. The scales of these corrections increase with compression. Furthermore, a case is made for the possibility for anomalous melting at much higher pressures, where quantum ion dynamics are expected to play a prominent role.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-09, Vol.94 (10)
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1840138
source American Physical Society Journals
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
First-principles calculations
Liquid-solid phase transition
Molecular dynamics
Phase diagrams
Pressure effects
Solid-solid transformations
Thermal properties
title Role of quantum ion dynamics in the melting of lithium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20quantum%20ion%20dynamics%20in%20the%20melting%20of%20lithium&rft.jtitle=Physical%20review.%20B&rft.au=Elatresh,%20S.%20F.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2016-09-09&rft.volume=94&rft.issue=10&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/&rft_dat=%3Costi%3E1840138%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true