Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts
Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-06, Vol.13 (21), p.24887-24895 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24895 |
---|---|
container_issue | 21 |
container_start_page | 24887 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Guo, Hongquan Huang, Jijie Zhou, Hua Zuo, Fan Jiang, Yifeng Zhang, Kelvin H. L Fu, Xianzhu Bu, Yunfei Cheng, Wei Sun, Yifei |
description | Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO .. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni–O orbital hybridization, which triggers the local electron–electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*(VO) to OH*(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process. |
doi_str_mv | 10.1021/acsami.1c04903 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1840015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528816014</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-e39c07ba069b00991725b3af6d59426e36e0e99a8ff32147702205a361395ca63</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoTqdXj1I8idD55UfT5ihzU2HoEHcOaZZit6yZTSrsvzfSuZunfJDne3m_B6ErDCMMBN8r7dWmHmENTAA9QmdYMJYWJCPHh5mxATr3fgXAKYHsFA0oAyAcyBmaLprOd8om786axFXJ3NVNSB5NZXTwSd0kc9O6b7-ug0lea702VsVpYuN367QKyu588BfopFLWm8v9O0SL6eRj_JzO3p5exg-zVFGRh9RQoSEvFXBRAgiBc5KVVFV8mQlGuKHcgBFCFVVFCWZ5DiQWVpRjKjKtOB2imz7X-VBLr2Mr_ald08Q6EhfxLJxF6LaHtq376owPclN7baxVjXGdl1FOUWAOmEV01KO6dd63ppLbtt6odicxyF_Bshcs94LjwvU-uys3ZnnA_4xG4K4H4qJcua5too__0n4ASKCDUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528816014</pqid></control><display><type>article</type><title>Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts</title><source>American Chemical Society Journals</source><creator>Guo, Hongquan ; Huang, Jijie ; Zhou, Hua ; Zuo, Fan ; Jiang, Yifeng ; Zhang, Kelvin H. L ; Fu, Xianzhu ; Bu, Yunfei ; Cheng, Wei ; Sun, Yifei</creator><creatorcontrib>Guo, Hongquan ; Huang, Jijie ; Zhou, Hua ; Zuo, Fan ; Jiang, Yifeng ; Zhang, Kelvin H. L ; Fu, Xianzhu ; Bu, Yunfei ; Cheng, Wei ; Sun, Yifei ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO .. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni–O orbital hybridization, which triggers the local electron–electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*(VO) to OH*(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c04903</identifier><identifier>PMID: 34002602</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>defects ; defects in solids ; DFT ; diffraction ; Energy, Environmental, and Catalysis Applications ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nickelate ; oxygen evolution reaction ; radioloty ; thin film</subject><ispartof>ACS applied materials & interfaces, 2021-06, Vol.13 (21), p.24887-24895</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-e39c07ba069b00991725b3af6d59426e36e0e99a8ff32147702205a361395ca63</citedby><cites>FETCH-LOGICAL-a397t-e39c07ba069b00991725b3af6d59426e36e0e99a8ff32147702205a361395ca63</cites><orcidid>0000-0001-9642-8674 ; 0000-0001-9352-6236 ; 0000-0003-1843-8927 ; 0000000196428674 ; 0000000193526236 ; 0000000318438927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c04903$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c04903$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34002602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1840015$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hongquan</creatorcontrib><creatorcontrib>Huang, Jijie</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Zuo, Fan</creatorcontrib><creatorcontrib>Jiang, Yifeng</creatorcontrib><creatorcontrib>Zhang, Kelvin H. L</creatorcontrib><creatorcontrib>Fu, Xianzhu</creatorcontrib><creatorcontrib>Bu, Yunfei</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO .. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni–O orbital hybridization, which triggers the local electron–electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*(VO) to OH*(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.</description><subject>defects</subject><subject>defects in solids</subject><subject>DFT</subject><subject>diffraction</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nickelate</subject><subject>oxygen evolution reaction</subject><subject>radioloty</subject><subject>thin film</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoTqdXj1I8idD55UfT5ihzU2HoEHcOaZZit6yZTSrsvzfSuZunfJDne3m_B6ErDCMMBN8r7dWmHmENTAA9QmdYMJYWJCPHh5mxATr3fgXAKYHsFA0oAyAcyBmaLprOd8om786axFXJ3NVNSB5NZXTwSd0kc9O6b7-ug0lea702VsVpYuN367QKyu588BfopFLWm8v9O0SL6eRj_JzO3p5exg-zVFGRh9RQoSEvFXBRAgiBc5KVVFV8mQlGuKHcgBFCFVVFCWZ5DiQWVpRjKjKtOB2imz7X-VBLr2Mr_ald08Q6EhfxLJxF6LaHtq376owPclN7baxVjXGdl1FOUWAOmEV01KO6dd63ppLbtt6odicxyF_Bshcs94LjwvU-uys3ZnnA_4xG4K4H4qJcua5too__0n4ASKCDUg</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Guo, Hongquan</creator><creator>Huang, Jijie</creator><creator>Zhou, Hua</creator><creator>Zuo, Fan</creator><creator>Jiang, Yifeng</creator><creator>Zhang, Kelvin H. L</creator><creator>Fu, Xianzhu</creator><creator>Bu, Yunfei</creator><creator>Cheng, Wei</creator><creator>Sun, Yifei</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000-0001-9352-6236</orcidid><orcidid>https://orcid.org/0000-0003-1843-8927</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid><orcidid>https://orcid.org/0000000193526236</orcidid><orcidid>https://orcid.org/0000000318438927</orcidid></search><sort><creationdate>20210602</creationdate><title>Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts</title><author>Guo, Hongquan ; Huang, Jijie ; Zhou, Hua ; Zuo, Fan ; Jiang, Yifeng ; Zhang, Kelvin H. L ; Fu, Xianzhu ; Bu, Yunfei ; Cheng, Wei ; Sun, Yifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-e39c07ba069b00991725b3af6d59426e36e0e99a8ff32147702205a361395ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>defects</topic><topic>defects in solids</topic><topic>DFT</topic><topic>diffraction</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nickelate</topic><topic>oxygen evolution reaction</topic><topic>radioloty</topic><topic>thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hongquan</creatorcontrib><creatorcontrib>Huang, Jijie</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Zuo, Fan</creatorcontrib><creatorcontrib>Jiang, Yifeng</creatorcontrib><creatorcontrib>Zhang, Kelvin H. L</creatorcontrib><creatorcontrib>Fu, Xianzhu</creatorcontrib><creatorcontrib>Bu, Yunfei</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hongquan</au><au>Huang, Jijie</au><au>Zhou, Hua</au><au>Zuo, Fan</au><au>Jiang, Yifeng</au><au>Zhang, Kelvin H. L</au><au>Fu, Xianzhu</au><au>Bu, Yunfei</au><au>Cheng, Wei</au><au>Sun, Yifei</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-06-02</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>24887</spage><epage>24895</epage><pages>24887-24895</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO .. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni–O orbital hybridization, which triggers the local electron–electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*(VO) to OH*(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34002602</pmid><doi>10.1021/acsami.1c04903</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000-0001-9352-6236</orcidid><orcidid>https://orcid.org/0000-0003-1843-8927</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid><orcidid>https://orcid.org/0000000193526236</orcidid><orcidid>https://orcid.org/0000000318438927</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-06, Vol.13 (21), p.24887-24895 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1840015 |
source | American Chemical Society Journals |
subjects | defects defects in solids DFT diffraction Energy, Environmental, and Catalysis Applications INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY nickelate oxygen evolution reaction radioloty thin film |
title | Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Role%20of%20Point%20Defects%20in%20Perovskite%20Nickelate%20Electrocatalysts&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Guo,%20Hongquan&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-06-02&rft.volume=13&rft.issue=21&rft.spage=24887&rft.epage=24895&rft.pages=24887-24895&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c04903&rft_dat=%3Cproquest_osti_%3E2528816014%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528816014&rft_id=info:pmid/34002602&rfr_iscdi=true |