Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts

Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-06, Vol.13 (21), p.24887-24895
Hauptverfasser: Guo, Hongquan, Huang, Jijie, Zhou, Hua, Zuo, Fan, Jiang, Yifeng, Zhang, Kelvin H. L, Fu, Xianzhu, Bu, Yunfei, Cheng, Wei, Sun, Yifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24895
container_issue 21
container_start_page 24887
container_title ACS applied materials & interfaces
container_volume 13
creator Guo, Hongquan
Huang, Jijie
Zhou, Hua
Zuo, Fan
Jiang, Yifeng
Zhang, Kelvin H. L
Fu, Xianzhu
Bu, Yunfei
Cheng, Wei
Sun, Yifei
description Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO .. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni–O orbital hybridization, which triggers the local electron–electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*­(VO) to OH*­(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.
doi_str_mv 10.1021/acsami.1c04903
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1840015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528816014</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-e39c07ba069b00991725b3af6d59426e36e0e99a8ff32147702205a361395ca63</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoTqdXj1I8idD55UfT5ihzU2HoEHcOaZZit6yZTSrsvzfSuZunfJDne3m_B6ErDCMMBN8r7dWmHmENTAA9QmdYMJYWJCPHh5mxATr3fgXAKYHsFA0oAyAcyBmaLprOd8om786axFXJ3NVNSB5NZXTwSd0kc9O6b7-ug0lea702VsVpYuN367QKyu588BfopFLWm8v9O0SL6eRj_JzO3p5exg-zVFGRh9RQoSEvFXBRAgiBc5KVVFV8mQlGuKHcgBFCFVVFCWZ5DiQWVpRjKjKtOB2imz7X-VBLr2Mr_ald08Q6EhfxLJxF6LaHtq376owPclN7baxVjXGdl1FOUWAOmEV01KO6dd63ppLbtt6odicxyF_Bshcs94LjwvU-uys3ZnnA_4xG4K4H4qJcua5too__0n4ASKCDUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528816014</pqid></control><display><type>article</type><title>Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts</title><source>American Chemical Society Journals</source><creator>Guo, Hongquan ; Huang, Jijie ; Zhou, Hua ; Zuo, Fan ; Jiang, Yifeng ; Zhang, Kelvin H. L ; Fu, Xianzhu ; Bu, Yunfei ; Cheng, Wei ; Sun, Yifei</creator><creatorcontrib>Guo, Hongquan ; Huang, Jijie ; Zhou, Hua ; Zuo, Fan ; Jiang, Yifeng ; Zhang, Kelvin H. L ; Fu, Xianzhu ; Bu, Yunfei ; Cheng, Wei ; Sun, Yifei ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO .. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni–O orbital hybridization, which triggers the local electron–electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*­(VO) to OH*­(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c04903</identifier><identifier>PMID: 34002602</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>defects ; defects in solids ; DFT ; diffraction ; Energy, Environmental, and Catalysis Applications ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nickelate ; oxygen evolution reaction ; radioloty ; thin film</subject><ispartof>ACS applied materials &amp; interfaces, 2021-06, Vol.13 (21), p.24887-24895</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-e39c07ba069b00991725b3af6d59426e36e0e99a8ff32147702205a361395ca63</citedby><cites>FETCH-LOGICAL-a397t-e39c07ba069b00991725b3af6d59426e36e0e99a8ff32147702205a361395ca63</cites><orcidid>0000-0001-9642-8674 ; 0000-0001-9352-6236 ; 0000-0003-1843-8927 ; 0000000196428674 ; 0000000193526236 ; 0000000318438927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c04903$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c04903$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34002602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1840015$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hongquan</creatorcontrib><creatorcontrib>Huang, Jijie</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Zuo, Fan</creatorcontrib><creatorcontrib>Jiang, Yifeng</creatorcontrib><creatorcontrib>Zhang, Kelvin H. L</creatorcontrib><creatorcontrib>Fu, Xianzhu</creatorcontrib><creatorcontrib>Bu, Yunfei</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO .. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni–O orbital hybridization, which triggers the local electron–electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*­(VO) to OH*­(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.</description><subject>defects</subject><subject>defects in solids</subject><subject>DFT</subject><subject>diffraction</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nickelate</subject><subject>oxygen evolution reaction</subject><subject>radioloty</subject><subject>thin film</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoTqdXj1I8idD55UfT5ihzU2HoEHcOaZZit6yZTSrsvzfSuZunfJDne3m_B6ErDCMMBN8r7dWmHmENTAA9QmdYMJYWJCPHh5mxATr3fgXAKYHsFA0oAyAcyBmaLprOd8om786axFXJ3NVNSB5NZXTwSd0kc9O6b7-ug0lea702VsVpYuN367QKyu588BfopFLWm8v9O0SL6eRj_JzO3p5exg-zVFGRh9RQoSEvFXBRAgiBc5KVVFV8mQlGuKHcgBFCFVVFCWZ5DiQWVpRjKjKtOB2imz7X-VBLr2Mr_ald08Q6EhfxLJxF6LaHtq376owPclN7baxVjXGdl1FOUWAOmEV01KO6dd63ppLbtt6odicxyF_Bshcs94LjwvU-uys3ZnnA_4xG4K4H4qJcua5too__0n4ASKCDUg</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Guo, Hongquan</creator><creator>Huang, Jijie</creator><creator>Zhou, Hua</creator><creator>Zuo, Fan</creator><creator>Jiang, Yifeng</creator><creator>Zhang, Kelvin H. L</creator><creator>Fu, Xianzhu</creator><creator>Bu, Yunfei</creator><creator>Cheng, Wei</creator><creator>Sun, Yifei</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000-0001-9352-6236</orcidid><orcidid>https://orcid.org/0000-0003-1843-8927</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid><orcidid>https://orcid.org/0000000193526236</orcidid><orcidid>https://orcid.org/0000000318438927</orcidid></search><sort><creationdate>20210602</creationdate><title>Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts</title><author>Guo, Hongquan ; Huang, Jijie ; Zhou, Hua ; Zuo, Fan ; Jiang, Yifeng ; Zhang, Kelvin H. L ; Fu, Xianzhu ; Bu, Yunfei ; Cheng, Wei ; Sun, Yifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-e39c07ba069b00991725b3af6d59426e36e0e99a8ff32147702205a361395ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>defects</topic><topic>defects in solids</topic><topic>DFT</topic><topic>diffraction</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nickelate</topic><topic>oxygen evolution reaction</topic><topic>radioloty</topic><topic>thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hongquan</creatorcontrib><creatorcontrib>Huang, Jijie</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Zuo, Fan</creatorcontrib><creatorcontrib>Jiang, Yifeng</creatorcontrib><creatorcontrib>Zhang, Kelvin H. L</creatorcontrib><creatorcontrib>Fu, Xianzhu</creatorcontrib><creatorcontrib>Bu, Yunfei</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Sun, Yifei</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hongquan</au><au>Huang, Jijie</au><au>Zhou, Hua</au><au>Zuo, Fan</au><au>Jiang, Yifeng</au><au>Zhang, Kelvin H. L</au><au>Fu, Xianzhu</au><au>Bu, Yunfei</au><au>Cheng, Wei</au><au>Sun, Yifei</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-06-02</date><risdate>2021</risdate><volume>13</volume><issue>21</issue><spage>24887</spage><epage>24895</epage><pages>24887-24895</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Low-cost transition-metal oxide is regarded as a promising electrocatalyst family for an oxygen evolution reaction (OER). The classic design principle for an oxide electrocatalyst believes that point defect engineering, such as oxygen vacancies (VO ..) or heteroatom doping, offers the opportunities to manipulate the electronic structure of material toward optimal OER activity. Oppositely, in this work, we discover a counterintuitive phenomenon that both VO .. and an aliovalent dopant (i.e., proton (H+)) in perovskite nickelate (i.e., NdNiO3 (NNO)) have a considerably detrimental effect on intrinsic OER performance. Detailed characterizations unveil that the introduction of these point defects leads to a decrease in the oxidative state of Ni and weakens Ni–O orbital hybridization, which triggers the local electron–electron correlation and a more insulating state. Evidenced by first-principles calculation using the density functional theory (DFT) method, the OER on nickelate electrocatalysts follows the lattice oxygen mechanism (LOM). The incorporation of point defect increases the energy barrier of transformation from OO*­(VO) to OH*­(VO) intermediates, which is regarded as the rate-determining step (RDS). This work offers a new and significant perspective of the role that lattice defects play in the OER process.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34002602</pmid><doi>10.1021/acsami.1c04903</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9642-8674</orcidid><orcidid>https://orcid.org/0000-0001-9352-6236</orcidid><orcidid>https://orcid.org/0000-0003-1843-8927</orcidid><orcidid>https://orcid.org/0000000196428674</orcidid><orcidid>https://orcid.org/0000000193526236</orcidid><orcidid>https://orcid.org/0000000318438927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-06, Vol.13 (21), p.24887-24895
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1840015
source American Chemical Society Journals
subjects defects
defects in solids
DFT
diffraction
Energy, Environmental, and Catalysis Applications
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
nickelate
oxygen evolution reaction
radioloty
thin film
title Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Role%20of%20Point%20Defects%20in%20Perovskite%20Nickelate%20Electrocatalysts&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Guo,%20Hongquan&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-06-02&rft.volume=13&rft.issue=21&rft.spage=24887&rft.epage=24895&rft.pages=24887-24895&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c04903&rft_dat=%3Cproquest_osti_%3E2528816014%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528816014&rft_id=info:pmid/34002602&rfr_iscdi=true