Super Planckian Thermal Radiation Emitted From a Nano-Filament of Photonic Crystal: A Direct Imaging Study
In this paper, we report a direct imaging of narrow-band super Planckian thermal radiation in the far field, emitted from a resonant-cavity/tungsten photonic crystal (cavity/W-PC). A spectroscopic study of the cavity/W-PC shows a distinct resonant peak at λ ~ 1.7 μm. Furthermore, an infrared CCD cam...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2019-12, Vol.11 (6) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | IEEE photonics journal |
container_volume | 11 |
creator | Hsieh, Mei-Li Lin, Shawn-Yu John, Sajeev Bur, James A. Wang, Xuanjie Narayanan, Shankar Luk, Ting-Shan |
description | In this paper, we report a direct imaging of narrow-band super Planckian thermal radiation in the far field, emitted from a resonant-cavity/tungsten photonic crystal (cavity/W-PC). A spectroscopic study of the cavity/W-PC shows a distinct resonant peak at λ ~ 1.7 μm. Furthermore, an infrared CCD camera was used to record radiation image of the cavity/W-PC and a carbon-nanotube (CNT) black reference at λ ~ 1.7 μm emitted from the same sample. The recorded image displays a higher brightness emitted from the cavity/W-PC region than from the blackbody region for all temperatures tested, T = 530-650 K. This observation is in sharp contrast to the common understanding of equilibrium thermal radiation, namely, a blackbody has a unit absorptance, a unity emittance and should emits the strongest radiation. Since the image was taken from the same sample and the temperature difference across the W-PC/ CNT boundary is less than 0.1 K, the observed image contrast gives a truly convincing evidence of super Planckian behavior in our sample. The discovery of a super-intense, narrow band radiation from a heated W-PC could open up a new door for realizing narrow band infrared emitters. The W-PC filament could also be very useful for efficient energy applications such as thermo-photovoltaics, waste heat recycling and radiative cooling. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1839778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1839778</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18397783</originalsourceid><addsrcrecordid>eNqNi7GqwkAQAA95gj71H5bXBxJijLETn0EbEbWX5XKa1bs9uVsL_14LsbaaKWY6qp9V4zxJJ0Xx8_Fx2VO_MV7SdFJlRdVXl_39ZgJsLbK-EjIcWhMcWthhQyjkGZaOREwDdfAOEDbIPqnJojMs4E-wbb14Jg2L8IiCdgZz-KdgtMDa4Zn4DHu5N4-h6p7QRjN6c6D-6uVhsUp8FDpGTWJ0qz3z6zxm07wqy2n-VfQE_MxIwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Super Planckian Thermal Radiation Emitted From a Nano-Filament of Photonic Crystal: A Direct Imaging Study</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hsieh, Mei-Li ; Lin, Shawn-Yu ; John, Sajeev ; Bur, James A. ; Wang, Xuanjie ; Narayanan, Shankar ; Luk, Ting-Shan</creator><creatorcontrib>Hsieh, Mei-Li ; Lin, Shawn-Yu ; John, Sajeev ; Bur, James A. ; Wang, Xuanjie ; Narayanan, Shankar ; Luk, Ting-Shan ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>In this paper, we report a direct imaging of narrow-band super Planckian thermal radiation in the far field, emitted from a resonant-cavity/tungsten photonic crystal (cavity/W-PC). A spectroscopic study of the cavity/W-PC shows a distinct resonant peak at λ ~ 1.7 μm. Furthermore, an infrared CCD camera was used to record radiation image of the cavity/W-PC and a carbon-nanotube (CNT) black reference at λ ~ 1.7 μm emitted from the same sample. The recorded image displays a higher brightness emitted from the cavity/W-PC region than from the blackbody region for all temperatures tested, T = 530-650 K. This observation is in sharp contrast to the common understanding of equilibrium thermal radiation, namely, a blackbody has a unit absorptance, a unity emittance and should emits the strongest radiation. Since the image was taken from the same sample and the temperature difference across the W-PC/ CNT boundary is less than 0.1 K, the observed image contrast gives a truly convincing evidence of super Planckian behavior in our sample. The discovery of a super-intense, narrow band radiation from a heated W-PC could open up a new door for realizing narrow band infrared emitters. The W-PC filament could also be very useful for efficient energy applications such as thermo-photovoltaics, waste heat recycling and radiative cooling.</description><identifier>ISSN: 1943-0647</identifier><identifier>EISSN: 1943-0655</identifier><language>eng</language><publisher>United States: Institute of Electrical and Electronics Engineers</publisher><subject>ENGINEERING ; Nano-photonics ; novel photon sources ; photonic crystals ; photonic materials and engineered photonic structures</subject><ispartof>IEEE photonics journal, 2019-12, Vol.11 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000031315022X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1839778$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Mei-Li</creatorcontrib><creatorcontrib>Lin, Shawn-Yu</creatorcontrib><creatorcontrib>John, Sajeev</creatorcontrib><creatorcontrib>Bur, James A.</creatorcontrib><creatorcontrib>Wang, Xuanjie</creatorcontrib><creatorcontrib>Narayanan, Shankar</creatorcontrib><creatorcontrib>Luk, Ting-Shan</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Super Planckian Thermal Radiation Emitted From a Nano-Filament of Photonic Crystal: A Direct Imaging Study</title><title>IEEE photonics journal</title><description>In this paper, we report a direct imaging of narrow-band super Planckian thermal radiation in the far field, emitted from a resonant-cavity/tungsten photonic crystal (cavity/W-PC). A spectroscopic study of the cavity/W-PC shows a distinct resonant peak at λ ~ 1.7 μm. Furthermore, an infrared CCD camera was used to record radiation image of the cavity/W-PC and a carbon-nanotube (CNT) black reference at λ ~ 1.7 μm emitted from the same sample. The recorded image displays a higher brightness emitted from the cavity/W-PC region than from the blackbody region for all temperatures tested, T = 530-650 K. This observation is in sharp contrast to the common understanding of equilibrium thermal radiation, namely, a blackbody has a unit absorptance, a unity emittance and should emits the strongest radiation. Since the image was taken from the same sample and the temperature difference across the W-PC/ CNT boundary is less than 0.1 K, the observed image contrast gives a truly convincing evidence of super Planckian behavior in our sample. The discovery of a super-intense, narrow band radiation from a heated W-PC could open up a new door for realizing narrow band infrared emitters. The W-PC filament could also be very useful for efficient energy applications such as thermo-photovoltaics, waste heat recycling and radiative cooling.</description><subject>ENGINEERING</subject><subject>Nano-photonics</subject><subject>novel photon sources</subject><subject>photonic crystals</subject><subject>photonic materials and engineered photonic structures</subject><issn>1943-0647</issn><issn>1943-0655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNi7GqwkAQAA95gj71H5bXBxJijLETn0EbEbWX5XKa1bs9uVsL_14LsbaaKWY6qp9V4zxJJ0Xx8_Fx2VO_MV7SdFJlRdVXl_39ZgJsLbK-EjIcWhMcWthhQyjkGZaOREwDdfAOEDbIPqnJojMs4E-wbb14Jg2L8IiCdgZz-KdgtMDa4Zn4DHu5N4-h6p7QRjN6c6D-6uVhsUp8FDpGTWJ0qz3z6zxm07wqy2n-VfQE_MxIwg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Hsieh, Mei-Li</creator><creator>Lin, Shawn-Yu</creator><creator>John, Sajeev</creator><creator>Bur, James A.</creator><creator>Wang, Xuanjie</creator><creator>Narayanan, Shankar</creator><creator>Luk, Ting-Shan</creator><general>Institute of Electrical and Electronics Engineers</general><scope>OTOTI</scope><orcidid>https://orcid.org/000000031315022X</orcidid></search><sort><creationdate>20191201</creationdate><title>Super Planckian Thermal Radiation Emitted From a Nano-Filament of Photonic Crystal: A Direct Imaging Study</title><author>Hsieh, Mei-Li ; Lin, Shawn-Yu ; John, Sajeev ; Bur, James A. ; Wang, Xuanjie ; Narayanan, Shankar ; Luk, Ting-Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18397783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ENGINEERING</topic><topic>Nano-photonics</topic><topic>novel photon sources</topic><topic>photonic crystals</topic><topic>photonic materials and engineered photonic structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Mei-Li</creatorcontrib><creatorcontrib>Lin, Shawn-Yu</creatorcontrib><creatorcontrib>John, Sajeev</creatorcontrib><creatorcontrib>Bur, James A.</creatorcontrib><creatorcontrib>Wang, Xuanjie</creatorcontrib><creatorcontrib>Narayanan, Shankar</creatorcontrib><creatorcontrib>Luk, Ting-Shan</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Mei-Li</au><au>Lin, Shawn-Yu</au><au>John, Sajeev</au><au>Bur, James A.</au><au>Wang, Xuanjie</au><au>Narayanan, Shankar</au><au>Luk, Ting-Shan</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super Planckian Thermal Radiation Emitted From a Nano-Filament of Photonic Crystal: A Direct Imaging Study</atitle><jtitle>IEEE photonics journal</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>11</volume><issue>6</issue><issn>1943-0647</issn><eissn>1943-0655</eissn><abstract>In this paper, we report a direct imaging of narrow-band super Planckian thermal radiation in the far field, emitted from a resonant-cavity/tungsten photonic crystal (cavity/W-PC). A spectroscopic study of the cavity/W-PC shows a distinct resonant peak at λ ~ 1.7 μm. Furthermore, an infrared CCD camera was used to record radiation image of the cavity/W-PC and a carbon-nanotube (CNT) black reference at λ ~ 1.7 μm emitted from the same sample. The recorded image displays a higher brightness emitted from the cavity/W-PC region than from the blackbody region for all temperatures tested, T = 530-650 K. This observation is in sharp contrast to the common understanding of equilibrium thermal radiation, namely, a blackbody has a unit absorptance, a unity emittance and should emits the strongest radiation. Since the image was taken from the same sample and the temperature difference across the W-PC/ CNT boundary is less than 0.1 K, the observed image contrast gives a truly convincing evidence of super Planckian behavior in our sample. The discovery of a super-intense, narrow band radiation from a heated W-PC could open up a new door for realizing narrow band infrared emitters. The W-PC filament could also be very useful for efficient energy applications such as thermo-photovoltaics, waste heat recycling and radiative cooling.</abstract><cop>United States</cop><pub>Institute of Electrical and Electronics Engineers</pub><orcidid>https://orcid.org/000000031315022X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0647 |
ispartof | IEEE photonics journal, 2019-12, Vol.11 (6) |
issn | 1943-0647 1943-0655 |
language | eng |
recordid | cdi_osti_scitechconnect_1839778 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | ENGINEERING Nano-photonics novel photon sources photonic crystals photonic materials and engineered photonic structures |
title | Super Planckian Thermal Radiation Emitted From a Nano-Filament of Photonic Crystal: A Direct Imaging Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20Planckian%20Thermal%20Radiation%20Emitted%20From%20a%20Nano-Filament%20of%20Photonic%20Crystal:%20A%20Direct%20Imaging%20Study&rft.jtitle=IEEE%20photonics%20journal&rft.au=Hsieh,%20Mei-Li&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2019-12-01&rft.volume=11&rft.issue=6&rft.issn=1943-0647&rft.eissn=1943-0655&rft_id=info:doi/&rft_dat=%3Costi%3E1839778%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |