Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal

The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2020-05, Vol.21 (12)
Hauptverfasser: Kamphaus, Ethan P., Gomez, Stefany Angarita, Qin, Xueping, Shao, Minhua, Balbuena, Perla B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Chemphyschem
container_volume 21
creator Kamphaus, Ethan P.
Gomez, Stefany Angarita
Qin, Xueping
Shao, Minhua
Balbuena, Perla B.
description The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. In this work, we report the investigation of the passivation behavior of Li2O, Li2CO3, LiF and LiOH with the lithium salt LiFSI. Here, we used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2CO3 are the most passivating of the SEI layers, followed by LiOH and Li2O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.
doi_str_mv 10.1002/cphc.202000174
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1838692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1838692</sourcerecordid><originalsourceid>FETCH-LOGICAL-g662-6d8ce0d6d0f5cd19157e1dea93c645f80ac6e62dae4d5ead702a225b32e694923</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMouK5ePQfvXfPd9ihlVwsVwd17ickbG-k2pckK_nsj7mlm4JmBQeiekg0lhD2aeTAbRhghhJbiAq2o4HVRKkEvz14wLq_RTYxfmalISVeo3zoHJkUcHN6H0Vu8HXNewviTALdTgmUedATchOMcJpj-0AmnAfA72JNJPqfc7fxu3-LwDUu2afCnI36FpMdbdOX0GOHurGt02G0PzUvRvT23zVNXfCrFCmUrA8QqS5w0ltZUlkAt6JobJaSriDYKFLMahJWgbUmYZkx-cAaqFjXja_TwPxti8n00PoEZTJim_KWnFa9Uhn4Bi2pWPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Kamphaus, Ethan P. ; Gomez, Stefany Angarita ; Qin, Xueping ; Shao, Minhua ; Balbuena, Perla B.</creator><creatorcontrib>Kamphaus, Ethan P. ; Gomez, Stefany Angarita ; Qin, Xueping ; Shao, Minhua ; Balbuena, Perla B. ; Texas A &amp; M Univ., College Station, TX (United States). Texas A &amp; M Engineering Experiment Station</creatorcontrib><description>The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. In this work, we report the investigation of the passivation behavior of Li2O, Li2CO3, LiF and LiOH with the lithium salt LiFSI. Here, we used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2CO3 are the most passivating of the SEI layers, followed by LiOH and Li2O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202000174</identifier><language>eng</language><publisher>United States: ChemPubSoc Europe</publisher><subject>ab initio molecular dynamics ; advanced batteries ; density functional theory ; ENERGY STORAGE ; lithium metal anode ; solid electrolyte interphase</subject><ispartof>Chemphyschem, 2020-05, Vol.21 (12)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000223583910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1838692$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamphaus, Ethan P.</creatorcontrib><creatorcontrib>Gomez, Stefany Angarita</creatorcontrib><creatorcontrib>Qin, Xueping</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Texas A &amp; M Univ., College Station, TX (United States). Texas A &amp; M Engineering Experiment Station</creatorcontrib><title>Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal</title><title>Chemphyschem</title><description>The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. In this work, we report the investigation of the passivation behavior of Li2O, Li2CO3, LiF and LiOH with the lithium salt LiFSI. Here, we used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2CO3 are the most passivating of the SEI layers, followed by LiOH and Li2O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.</description><subject>ab initio molecular dynamics</subject><subject>advanced batteries</subject><subject>density functional theory</subject><subject>ENERGY STORAGE</subject><subject>lithium metal anode</subject><subject>solid electrolyte interphase</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotj01LxDAYhIMouK5ePQfvXfPd9ihlVwsVwd17ickbG-k2pckK_nsj7mlm4JmBQeiekg0lhD2aeTAbRhghhJbiAq2o4HVRKkEvz14wLq_RTYxfmalISVeo3zoHJkUcHN6H0Vu8HXNewviTALdTgmUedATchOMcJpj-0AmnAfA72JNJPqfc7fxu3-LwDUu2afCnI36FpMdbdOX0GOHurGt02G0PzUvRvT23zVNXfCrFCmUrA8QqS5w0ltZUlkAt6JobJaSriDYKFLMahJWgbUmYZkx-cAaqFjXja_TwPxti8n00PoEZTJim_KWnFa9Uhn4Bi2pWPQ</recordid><startdate>20200504</startdate><enddate>20200504</enddate><creator>Kamphaus, Ethan P.</creator><creator>Gomez, Stefany Angarita</creator><creator>Qin, Xueping</creator><creator>Shao, Minhua</creator><creator>Balbuena, Perla B.</creator><general>ChemPubSoc Europe</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000223583910</orcidid></search><sort><creationdate>20200504</creationdate><title>Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal</title><author>Kamphaus, Ethan P. ; Gomez, Stefany Angarita ; Qin, Xueping ; Shao, Minhua ; Balbuena, Perla B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g662-6d8ce0d6d0f5cd19157e1dea93c645f80ac6e62dae4d5ead702a225b32e694923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ab initio molecular dynamics</topic><topic>advanced batteries</topic><topic>density functional theory</topic><topic>ENERGY STORAGE</topic><topic>lithium metal anode</topic><topic>solid electrolyte interphase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamphaus, Ethan P.</creatorcontrib><creatorcontrib>Gomez, Stefany Angarita</creatorcontrib><creatorcontrib>Qin, Xueping</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><creatorcontrib>Balbuena, Perla B.</creatorcontrib><creatorcontrib>Texas A &amp; M Univ., College Station, TX (United States). Texas A &amp; M Engineering Experiment Station</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamphaus, Ethan P.</au><au>Gomez, Stefany Angarita</au><au>Qin, Xueping</au><au>Shao, Minhua</au><au>Balbuena, Perla B.</au><aucorp>Texas A &amp; M Univ., College Station, TX (United States). Texas A &amp; M Engineering Experiment Station</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal</atitle><jtitle>Chemphyschem</jtitle><date>2020-05-04</date><risdate>2020</risdate><volume>21</volume><issue>12</issue><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. In this work, we report the investigation of the passivation behavior of Li2O, Li2CO3, LiF and LiOH with the lithium salt LiFSI. Here, we used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2CO3 are the most passivating of the SEI layers, followed by LiOH and Li2O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.</abstract><cop>United States</cop><pub>ChemPubSoc Europe</pub><doi>10.1002/cphc.202000174</doi><orcidid>https://orcid.org/0000000223583910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2020-05, Vol.21 (12)
issn 1439-4235
1439-7641
language eng
recordid cdi_osti_scitechconnect_1838692
source Wiley Online Library - AutoHoldings Journals
subjects ab initio molecular dynamics
advanced batteries
density functional theory
ENERGY STORAGE
lithium metal anode
solid electrolyte interphase
title Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Solid%20Electrolyte%20Interphase%20Components%20on%20the%20Reduction%20of%20LiFSI%20over%20Lithium%20Metal&rft.jtitle=Chemphyschem&rft.au=Kamphaus,%20Ethan%20P.&rft.aucorp=Texas%20A%20&%20M%20Univ.,%20College%20Station,%20TX%20(United%20States).%20Texas%20A%20&%20M%20Engineering%20Experiment%20Station&rft.date=2020-05-04&rft.volume=21&rft.issue=12&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202000174&rft_dat=%3Costi%3E1838692%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true