Nuclei with Up to A = 6 Nucleons with Artificial Neural Network Wave Functions
The ground-breaking works of Weinberg have opened the way to calculations of atomic nuclei that are based on systematically improvable Hamiltonians. Solving the associated many-body Schrödinger equation involves non-trivial difficulties, due to the non-perturbative nature and strong spin-isospin dep...
Gespeichert in:
Veröffentlicht in: | Few-body systems 2021-12, Vol.63 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Few-body systems |
container_volume | 63 |
creator | Gnech, Alex Adams, Corey Brawand, Nicholas Carleo, Giuseppe Lovato, Alessandro Rocco, Noemi |
description | The ground-breaking works of Weinberg have opened the way to calculations of atomic nuclei that are based on systematically improvable Hamiltonians. Solving the associated many-body Schrödinger equation involves non-trivial difficulties, due to the non-perturbative nature and strong spin-isospin dependence of nuclear interactions. Artificial neural networks have proven to be able to compactly represent the wave functions of nuclei with up to $A=4$ nucleons. In this work, we extend this approach to $^6$Li and $^6$He nuclei, using as input a leading-order pionless effective field theory Hamiltonian. We successfully benchmark their binding energies, point-nucleon densities, and radii with the highly-accurate hyperspherical harmonics method. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1838512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1838512</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18385123</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcoyB7_cGkveB2fixYSRStXRUuRYcRbMhPONX-_sD6g1YFzzkx4GMnQjyPEufACTFM_zRO5FCvn7kGAcY6BJ8pyUJ0mGIlbuD6BLRSwhwQmb437lqJnakhR3UGph34Cj7Z_wK1-aTgNRjF97o1YNHXn9PbHtdidjpfD2beOqXKKWKtWWWO04gozmcUYyr-mN4yWPgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nuclei with Up to A = 6 Nucleons with Artificial Neural Network Wave Functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gnech, Alex ; Adams, Corey ; Brawand, Nicholas ; Carleo, Giuseppe ; Lovato, Alessandro ; Rocco, Noemi</creator><creatorcontrib>Gnech, Alex ; Adams, Corey ; Brawand, Nicholas ; Carleo, Giuseppe ; Lovato, Alessandro ; Rocco, Noemi ; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States) ; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Laboratory Computing Resource Center (LCRC) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF)</creatorcontrib><description>The ground-breaking works of Weinberg have opened the way to calculations of atomic nuclei that are based on systematically improvable Hamiltonians. Solving the associated many-body Schrödinger equation involves non-trivial difficulties, due to the non-perturbative nature and strong spin-isospin dependence of nuclear interactions. Artificial neural networks have proven to be able to compactly represent the wave functions of nuclei with up to $A=4$ nucleons. In this work, we extend this approach to $^6$Li and $^6$He nuclei, using as input a leading-order pionless effective field theory Hamiltonian. We successfully benchmark their binding energies, point-nucleon densities, and radii with the highly-accurate hyperspherical harmonics method.</description><identifier>ISSN: 0177-7963</identifier><identifier>EISSN: 1432-5411</identifier><language>eng</language><publisher>United States: Springer</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><ispartof>Few-body systems, 2021-12, Vol.63 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000221944954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1838512$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gnech, Alex</creatorcontrib><creatorcontrib>Adams, Corey</creatorcontrib><creatorcontrib>Brawand, Nicholas</creatorcontrib><creatorcontrib>Carleo, Giuseppe</creatorcontrib><creatorcontrib>Lovato, Alessandro</creatorcontrib><creatorcontrib>Rocco, Noemi</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Laboratory Computing Resource Center (LCRC)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF)</creatorcontrib><title>Nuclei with Up to A = 6 Nucleons with Artificial Neural Network Wave Functions</title><title>Few-body systems</title><description>The ground-breaking works of Weinberg have opened the way to calculations of atomic nuclei that are based on systematically improvable Hamiltonians. Solving the associated many-body Schrödinger equation involves non-trivial difficulties, due to the non-perturbative nature and strong spin-isospin dependence of nuclear interactions. Artificial neural networks have proven to be able to compactly represent the wave functions of nuclei with up to $A=4$ nucleons. In this work, we extend this approach to $^6$Li and $^6$He nuclei, using as input a leading-order pionless effective field theory Hamiltonian. We successfully benchmark their binding energies, point-nucleon densities, and radii with the highly-accurate hyperspherical harmonics method.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><issn>0177-7963</issn><issn>1432-5411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNissKgkAUQIcoyB7_cGkveB2fixYSRStXRUuRYcRbMhPONX-_sD6g1YFzzkx4GMnQjyPEufACTFM_zRO5FCvn7kGAcY6BJ8pyUJ0mGIlbuD6BLRSwhwQmb437lqJnakhR3UGph34Cj7Z_wK1-aTgNRjF97o1YNHXn9PbHtdidjpfD2beOqXKKWKtWWWO04gozmcUYyr-mN4yWPgw</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Gnech, Alex</creator><creator>Adams, Corey</creator><creator>Brawand, Nicholas</creator><creator>Carleo, Giuseppe</creator><creator>Lovato, Alessandro</creator><creator>Rocco, Noemi</creator><general>Springer</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000221944954</orcidid></search><sort><creationdate>20211209</creationdate><title>Nuclei with Up to A = 6 Nucleons with Artificial Neural Network Wave Functions</title><author>Gnech, Alex ; Adams, Corey ; Brawand, Nicholas ; Carleo, Giuseppe ; Lovato, Alessandro ; Rocco, Noemi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18385123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnech, Alex</creatorcontrib><creatorcontrib>Adams, Corey</creatorcontrib><creatorcontrib>Brawand, Nicholas</creatorcontrib><creatorcontrib>Carleo, Giuseppe</creatorcontrib><creatorcontrib>Lovato, Alessandro</creatorcontrib><creatorcontrib>Rocco, Noemi</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Laboratory Computing Resource Center (LCRC)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Few-body systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnech, Alex</au><au>Adams, Corey</au><au>Brawand, Nicholas</au><au>Carleo, Giuseppe</au><au>Lovato, Alessandro</au><au>Rocco, Noemi</au><aucorp>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</aucorp><aucorp>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Laboratory Computing Resource Center (LCRC)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclei with Up to A = 6 Nucleons with Artificial Neural Network Wave Functions</atitle><jtitle>Few-body systems</jtitle><date>2021-12-09</date><risdate>2021</risdate><volume>63</volume><issue>1</issue><issn>0177-7963</issn><eissn>1432-5411</eissn><abstract>The ground-breaking works of Weinberg have opened the way to calculations of atomic nuclei that are based on systematically improvable Hamiltonians. Solving the associated many-body Schrödinger equation involves non-trivial difficulties, due to the non-perturbative nature and strong spin-isospin dependence of nuclear interactions. Artificial neural networks have proven to be able to compactly represent the wave functions of nuclei with up to $A=4$ nucleons. In this work, we extend this approach to $^6$Li and $^6$He nuclei, using as input a leading-order pionless effective field theory Hamiltonian. We successfully benchmark their binding energies, point-nucleon densities, and radii with the highly-accurate hyperspherical harmonics method.</abstract><cop>United States</cop><pub>Springer</pub><orcidid>https://orcid.org/0000000221944954</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-7963 |
ispartof | Few-body systems, 2021-12, Vol.63 (1) |
issn | 0177-7963 1432-5411 |
language | eng |
recordid | cdi_osti_scitechconnect_1838512 |
source | SpringerLink Journals - AutoHoldings |
subjects | ATOMIC AND MOLECULAR PHYSICS NUCLEAR PHYSICS AND RADIATION PHYSICS |
title | Nuclei with Up to A = 6 Nucleons with Artificial Neural Network Wave Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclei%20with%20Up%20to%20A%20=%206%20Nucleons%20with%20Artificial%20Neural%20Network%20Wave%20Functions&rft.jtitle=Few-body%20systems&rft.au=Gnech,%20Alex&rft.aucorp=Thomas%20Jefferson%20National%20Accelerator%20Facility%20(TJNAF),%20Newport%20News,%20VA%20(United%20States)&rft.date=2021-12-09&rft.volume=63&rft.issue=1&rft.issn=0177-7963&rft.eissn=1432-5411&rft_id=info:doi/&rft_dat=%3Costi%3E1838512%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |