Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility
Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Di...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2015-05, Vol.22 (5) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 22 |
creator | Casner, A. Masse, L. Liberatore, S. Loiseau, P. Masson-Laborde, P. E. Jacquet, L. Martinez, D. Moore, A. S. Seugling, R. Felker, S. Haan, S. W. Remington, B. A. Smalyuk, V. A. Farrell, M. Giraldez, E. Nikroo, A. |
description | Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front. |
doi_str_mv | 10.1063/1.4918356 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1837363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4918356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-38348b3ae19b6d5ef7ebf63a87435a5a47d011253be363d14a1ab548861537cd3</originalsourceid><addsrcrecordid>eNotkN1KAzEQhYMoWKsXvkHwzoutifntpRSrhaIiFbxbkt3ZNrImJQli38GHNtsWBubAfHOYOQhdUzKhRLI7OuFTqpmQJ2hEiZ5WSip-OmhFKin55zm6SOmLEMKl0CP09xaDdX6N8wZwC7DFPvjeeTARp2zWgEO3nxnbm-x-AL-bXQ9uvalWRYSInS-cdb3Lu6JLtS5Ck3EbBxp-txDdN_iccPB7p5fiE7zp8WLt3SDx3DT7_Ut01pk-wdWxj9HH_HE1e66Wr0-L2cOyaphQuWKacW2ZATq1shXQKbCdZEYrzoQRhquWUHovmAUmWUu5ocYKrrWkgqmmZWN0c_ANKbs6NS5Ds2mC9-XuuqSnylqBbg9QE0NKEbp6Wx4xcVdTUg9Z17Q-Zs3-ATZFcyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Casner, A. ; Masse, L. ; Liberatore, S. ; Loiseau, P. ; Masson-Laborde, P. E. ; Jacquet, L. ; Martinez, D. ; Moore, A. S. ; Seugling, R. ; Felker, S. ; Haan, S. W. ; Remington, B. A. ; Smalyuk, V. A. ; Farrell, M. ; Giraldez, E. ; Nikroo, A.</creator><creatorcontrib>Casner, A. ; Masse, L. ; Liberatore, S. ; Loiseau, P. ; Masson-Laborde, P. E. ; Jacquet, L. ; Martinez, D. ; Moore, A. S. ; Seugling, R. ; Felker, S. ; Haan, S. W. ; Remington, B. A. ; Smalyuk, V. A. ; Farrell, M. ; Giraldez, E. ; Nikroo, A. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4918356</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; plasma physics</subject><ispartof>Physics of plasmas, 2015-05, Vol.22 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-38348b3ae19b6d5ef7ebf63a87435a5a47d011253be363d14a1ab548861537cd3</citedby><cites>FETCH-LOGICAL-c357t-38348b3ae19b6d5ef7ebf63a87435a5a47d011253be363d14a1ab548861537cd3</cites><orcidid>0000-0003-2176-1389 ; 0000-0003-2234-0287 ; 0000-0001-8404-5131 ; 0000-0001-7597-9645 ; 0000-0002-8855-0378 ; 0000000175979645 ; 0000000322340287 ; 0000000321761389 ; 0000000184045131 ; 0000000288550378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1837363$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Casner, A.</creatorcontrib><creatorcontrib>Masse, L.</creatorcontrib><creatorcontrib>Liberatore, S.</creatorcontrib><creatorcontrib>Loiseau, P.</creatorcontrib><creatorcontrib>Masson-Laborde, P. E.</creatorcontrib><creatorcontrib>Jacquet, L.</creatorcontrib><creatorcontrib>Martinez, D.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Seugling, R.</creatorcontrib><creatorcontrib>Felker, S.</creatorcontrib><creatorcontrib>Haan, S. W.</creatorcontrib><creatorcontrib>Remington, B. A.</creatorcontrib><creatorcontrib>Smalyuk, V. A.</creatorcontrib><creatorcontrib>Farrell, M.</creatorcontrib><creatorcontrib>Giraldez, E.</creatorcontrib><creatorcontrib>Nikroo, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility</title><title>Physics of plasmas</title><description>Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>plasma physics</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkN1KAzEQhYMoWKsXvkHwzoutifntpRSrhaIiFbxbkt3ZNrImJQli38GHNtsWBubAfHOYOQhdUzKhRLI7OuFTqpmQJ2hEiZ5WSip-OmhFKin55zm6SOmLEMKl0CP09xaDdX6N8wZwC7DFPvjeeTARp2zWgEO3nxnbm-x-AL-bXQ9uvalWRYSInS-cdb3Lu6JLtS5Ck3EbBxp-txDdN_iccPB7p5fiE7zp8WLt3SDx3DT7_Ut01pk-wdWxj9HH_HE1e66Wr0-L2cOyaphQuWKacW2ZATq1shXQKbCdZEYrzoQRhquWUHovmAUmWUu5ocYKrrWkgqmmZWN0c_ANKbs6NS5Ds2mC9-XuuqSnylqBbg9QE0NKEbp6Wx4xcVdTUg9Z17Q-Zs3-ATZFcyg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Casner, A.</creator><creator>Masse, L.</creator><creator>Liberatore, S.</creator><creator>Loiseau, P.</creator><creator>Masson-Laborde, P. E.</creator><creator>Jacquet, L.</creator><creator>Martinez, D.</creator><creator>Moore, A. S.</creator><creator>Seugling, R.</creator><creator>Felker, S.</creator><creator>Haan, S. W.</creator><creator>Remington, B. A.</creator><creator>Smalyuk, V. A.</creator><creator>Farrell, M.</creator><creator>Giraldez, E.</creator><creator>Nikroo, A.</creator><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2176-1389</orcidid><orcidid>https://orcid.org/0000-0003-2234-0287</orcidid><orcidid>https://orcid.org/0000-0001-8404-5131</orcidid><orcidid>https://orcid.org/0000-0001-7597-9645</orcidid><orcidid>https://orcid.org/0000-0002-8855-0378</orcidid><orcidid>https://orcid.org/0000000175979645</orcidid><orcidid>https://orcid.org/0000000322340287</orcidid><orcidid>https://orcid.org/0000000321761389</orcidid><orcidid>https://orcid.org/0000000184045131</orcidid><orcidid>https://orcid.org/0000000288550378</orcidid></search><sort><creationdate>20150501</creationdate><title>Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility</title><author>Casner, A. ; Masse, L. ; Liberatore, S. ; Loiseau, P. ; Masson-Laborde, P. E. ; Jacquet, L. ; Martinez, D. ; Moore, A. S. ; Seugling, R. ; Felker, S. ; Haan, S. W. ; Remington, B. A. ; Smalyuk, V. A. ; Farrell, M. ; Giraldez, E. ; Nikroo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-38348b3ae19b6d5ef7ebf63a87435a5a47d011253be363d14a1ab548861537cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>plasma physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casner, A.</creatorcontrib><creatorcontrib>Masse, L.</creatorcontrib><creatorcontrib>Liberatore, S.</creatorcontrib><creatorcontrib>Loiseau, P.</creatorcontrib><creatorcontrib>Masson-Laborde, P. E.</creatorcontrib><creatorcontrib>Jacquet, L.</creatorcontrib><creatorcontrib>Martinez, D.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Seugling, R.</creatorcontrib><creatorcontrib>Felker, S.</creatorcontrib><creatorcontrib>Haan, S. W.</creatorcontrib><creatorcontrib>Remington, B. A.</creatorcontrib><creatorcontrib>Smalyuk, V. A.</creatorcontrib><creatorcontrib>Farrell, M.</creatorcontrib><creatorcontrib>Giraldez, E.</creatorcontrib><creatorcontrib>Nikroo, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casner, A.</au><au>Masse, L.</au><au>Liberatore, S.</au><au>Loiseau, P.</au><au>Masson-Laborde, P. E.</au><au>Jacquet, L.</au><au>Martinez, D.</au><au>Moore, A. S.</au><au>Seugling, R.</au><au>Felker, S.</au><au>Haan, S. W.</au><au>Remington, B. A.</au><au>Smalyuk, V. A.</au><au>Farrell, M.</au><au>Giraldez, E.</au><au>Nikroo, A.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility</atitle><jtitle>Physics of plasmas</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>22</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><doi>10.1063/1.4918356</doi><orcidid>https://orcid.org/0000-0003-2176-1389</orcidid><orcidid>https://orcid.org/0000-0003-2234-0287</orcidid><orcidid>https://orcid.org/0000-0001-8404-5131</orcidid><orcidid>https://orcid.org/0000-0001-7597-9645</orcidid><orcidid>https://orcid.org/0000-0002-8855-0378</orcidid><orcidid>https://orcid.org/0000000175979645</orcidid><orcidid>https://orcid.org/0000000322340287</orcidid><orcidid>https://orcid.org/0000000321761389</orcidid><orcidid>https://orcid.org/0000000184045131</orcidid><orcidid>https://orcid.org/0000000288550378</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2015-05, Vol.22 (5) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1837363 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY plasma physics |
title | Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20deep%20nonlinear%20stage%20of%20the%20ablative%20Rayleigh-Taylor%20instability%20in%20indirect%20drive%20experiments%20on%20the%20National%20Ignition%20Facility&rft.jtitle=Physics%20of%20plasmas&rft.au=Casner,%20A.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2015-05-01&rft.volume=22&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/10.1063/1.4918356&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4918356%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |