Practical algorithms for multivariate rational approximation

We present two approaches for computing rational approximations to multivariate functions, motivated by their effectiveness as surrogate models for high-energy physics (HEP) applications. Our first approach builds on the Stieltjes process to efficiently and robustly compute the coefficients of the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2020-10, Vol.261
Hauptverfasser: Austin, Anthony P., Krishnamoorthy, Mohan, Leyffer, Sven, Mrenna, Stephen, Müller, Juliane, Schulz, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Computer physics communications
container_volume 261
creator Austin, Anthony P.
Krishnamoorthy, Mohan
Leyffer, Sven
Mrenna, Stephen
Müller, Juliane
Schulz, Holger
description We present two approaches for computing rational approximations to multivariate functions, motivated by their effectiveness as surrogate models for high-energy physics (HEP) applications. Our first approach builds on the Stieltjes process to efficiently and robustly compute the coefficients of the rational approximation. Our second approach is based on an optimization formulation that allows us to include structural constraints on the rational approximation (in particular, constraints demanding the absence of singularities), resulting in a semi-infinite optimization problem that we solve using an outer approximation approach. We present results for synthetic and real-life HEP data, and we compare the approximation quality of our approaches with that of traditional polynomial approximations.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1836671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1836671</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18366713</originalsourceid><addsrcrecordid>eNqNyssKwjAQQNEgCtbHPwT3haSPpAV3orh04b4MIbUjSVOSUfx8UfwAV5cLZ8Yy2eg2L9qqmrNMCCnyStX1kq1SugshtG7LjO0vEQyhAcfB3UJEGnzifYjcPxzhEyICWR6BMIwfNE0xvNB_f8MWPbhkt7-u2e50vB7OeUiEXTJI1gwmjKM11MmmVErL8i_0BlALOhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Practical algorithms for multivariate rational approximation</title><source>Elsevier ScienceDirect Journals</source><creator>Austin, Anthony P. ; Krishnamoorthy, Mohan ; Leyffer, Sven ; Mrenna, Stephen ; Müller, Juliane ; Schulz, Holger</creator><creatorcontrib>Austin, Anthony P. ; Krishnamoorthy, Mohan ; Leyffer, Sven ; Mrenna, Stephen ; Müller, Juliane ; Schulz, Holger ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We present two approaches for computing rational approximations to multivariate functions, motivated by their effectiveness as surrogate models for high-energy physics (HEP) applications. Our first approach builds on the Stieltjes process to efficiently and robustly compute the coefficients of the rational approximation. Our second approach is based on an optimization formulation that allows us to include structural constraints on the rational approximation (in particular, constraints demanding the absence of singularities), resulting in a semi-infinite optimization problem that we solve using an outer approximation approach. We present results for synthetic and real-life HEP data, and we compare the approximation quality of our approaches with that of traditional polynomial approximations.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Discrete least-squares ; MATHEMATICS AND COMPUTING ; Multivariate rational approximation ; Semi-infinite optimization ; Surrogate modeling</subject><ispartof>Computer physics communications, 2020-10, Vol.261</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1836671$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Austin, Anthony P.</creatorcontrib><creatorcontrib>Krishnamoorthy, Mohan</creatorcontrib><creatorcontrib>Leyffer, Sven</creatorcontrib><creatorcontrib>Mrenna, Stephen</creatorcontrib><creatorcontrib>Müller, Juliane</creatorcontrib><creatorcontrib>Schulz, Holger</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Practical algorithms for multivariate rational approximation</title><title>Computer physics communications</title><description>We present two approaches for computing rational approximations to multivariate functions, motivated by their effectiveness as surrogate models for high-energy physics (HEP) applications. Our first approach builds on the Stieltjes process to efficiently and robustly compute the coefficients of the rational approximation. Our second approach is based on an optimization formulation that allows us to include structural constraints on the rational approximation (in particular, constraints demanding the absence of singularities), resulting in a semi-infinite optimization problem that we solve using an outer approximation approach. We present results for synthetic and real-life HEP data, and we compare the approximation quality of our approaches with that of traditional polynomial approximations.</description><subject>Discrete least-squares</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Multivariate rational approximation</subject><subject>Semi-infinite optimization</subject><subject>Surrogate modeling</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNyssKwjAQQNEgCtbHPwT3haSPpAV3orh04b4MIbUjSVOSUfx8UfwAV5cLZ8Yy2eg2L9qqmrNMCCnyStX1kq1SugshtG7LjO0vEQyhAcfB3UJEGnzifYjcPxzhEyICWR6BMIwfNE0xvNB_f8MWPbhkt7-u2e50vB7OeUiEXTJI1gwmjKM11MmmVErL8i_0BlALOhA</recordid><startdate>20201022</startdate><enddate>20201022</enddate><creator>Austin, Anthony P.</creator><creator>Krishnamoorthy, Mohan</creator><creator>Leyffer, Sven</creator><creator>Mrenna, Stephen</creator><creator>Müller, Juliane</creator><creator>Schulz, Holger</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20201022</creationdate><title>Practical algorithms for multivariate rational approximation</title><author>Austin, Anthony P. ; Krishnamoorthy, Mohan ; Leyffer, Sven ; Mrenna, Stephen ; Müller, Juliane ; Schulz, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18366713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Discrete least-squares</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Multivariate rational approximation</topic><topic>Semi-infinite optimization</topic><topic>Surrogate modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Austin, Anthony P.</creatorcontrib><creatorcontrib>Krishnamoorthy, Mohan</creatorcontrib><creatorcontrib>Leyffer, Sven</creatorcontrib><creatorcontrib>Mrenna, Stephen</creatorcontrib><creatorcontrib>Müller, Juliane</creatorcontrib><creatorcontrib>Schulz, Holger</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austin, Anthony P.</au><au>Krishnamoorthy, Mohan</au><au>Leyffer, Sven</au><au>Mrenna, Stephen</au><au>Müller, Juliane</au><au>Schulz, Holger</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical algorithms for multivariate rational approximation</atitle><jtitle>Computer physics communications</jtitle><date>2020-10-22</date><risdate>2020</risdate><volume>261</volume><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We present two approaches for computing rational approximations to multivariate functions, motivated by their effectiveness as surrogate models for high-energy physics (HEP) applications. Our first approach builds on the Stieltjes process to efficiently and robustly compute the coefficients of the rational approximation. Our second approach is based on an optimization formulation that allows us to include structural constraints on the rational approximation (in particular, constraints demanding the absence of singularities), resulting in a semi-infinite optimization problem that we solve using an outer approximation approach. We present results for synthetic and real-life HEP data, and we compare the approximation quality of our approaches with that of traditional polynomial approximations.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2020-10, Vol.261
issn 0010-4655
1879-2944
language eng
recordid cdi_osti_scitechconnect_1836671
source Elsevier ScienceDirect Journals
subjects Discrete least-squares
MATHEMATICS AND COMPUTING
Multivariate rational approximation
Semi-infinite optimization
Surrogate modeling
title Practical algorithms for multivariate rational approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20algorithms%20for%20multivariate%20rational%20approximation&rft.jtitle=Computer%20physics%20communications&rft.au=Austin,%20Anthony%20P.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-10-22&rft.volume=261&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/&rft_dat=%3Costi%3E1836671%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true