Polysulfide-Permanganate Flow Battery Using Abundant Active Materials
A new flow battery is presented using the abundant and inexpensive active material pairs permanganate/manganate and disulfide/tetrasulfide. A wetted material set is identified for compatibility with the strongly oxidizing manganese couple at ambient and elevated temperatures. Both solutions allow hi...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2021-07, Vol.168 (7) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Journal of the Electrochemical Society |
container_volume | 168 |
creator | Yang, Zhiwei Gerhardt, Michael R. Fortin, Michael Shovlin, Christopher Weber, Adam Z. Perry, Mike L. Darling, Robert M. Saraidaridis, James D. |
description | A new flow battery is presented using the abundant and inexpensive active material pairs permanganate/manganate and disulfide/tetrasulfide. A wetted material set is identified for compatibility with the strongly oxidizing manganese couple at ambient and elevated temperatures. Both solutions allow high active material solubility, with cells tested at theoretical energy densities up to 43 Wh l
−1
for the ∼1.2 V cell. Full cells built with nickel foam electrodes and sodium-exchanged Nafion 115 membranes deliver a baseline area-specific resistance of 2.7 Ω-cm
2
. Incorporation of high-surface-area cobalt-coated carbon paper and high-surface-area stainless steel mesh electrodes, and an expanded Nafion 115 membrane delivers cells with 44% lower resistance at 1.6 Ω-cm
2
. All cells show performance decay over the course of cycling. The Co-decorated carbon paper electrodes provide significant kinetic improvements, shifting electrode performance from non-linear with Ni-foam to linear with a volume-normalized exchange current density value of 3.2 A cm
−3
. The expanded membrane provides increased conductivity over the 13 mS cm
−1
conductivity observed in as-received, sodium-exchanged Nafion 115. Although boiled membranes provide improved conductivity, it is at the cost of decreased Coulombic efficiency and poorer manufacturability. Full cell models suggest that similar cell resistances (1.7 Ω-cm
2
) should be feasible with as-received Nafion 115 and advanced electrodes. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1835333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835333</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18353333</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcoyB7_MLQf8KKmLS2UNoGLWss0Xm1imgHnWvj3uegDOpvDgTNjARziRKQAMGdBGEIk4n0CS7by_jklZHEasKJyZvSDaXWDosL-JW0nrSTkpXEffpRE2I_85rXteH4fbCMt8VyRfiO_TF-vpfEbtmgn4fbnNduVxfV0Fs6Trr3ShOqhnLWoqIYsSqKJv6YvGkw8PA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polysulfide-Permanganate Flow Battery Using Abundant Active Materials</title><source>Institute of Physics Journals</source><creator>Yang, Zhiwei ; Gerhardt, Michael R. ; Fortin, Michael ; Shovlin, Christopher ; Weber, Adam Z. ; Perry, Mike L. ; Darling, Robert M. ; Saraidaridis, James D.</creator><creatorcontrib>Yang, Zhiwei ; Gerhardt, Michael R. ; Fortin, Michael ; Shovlin, Christopher ; Weber, Adam Z. ; Perry, Mike L. ; Darling, Robert M. ; Saraidaridis, James D. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>A new flow battery is presented using the abundant and inexpensive active material pairs permanganate/manganate and disulfide/tetrasulfide. A wetted material set is identified for compatibility with the strongly oxidizing manganese couple at ambient and elevated temperatures. Both solutions allow high active material solubility, with cells tested at theoretical energy densities up to 43 Wh l
−1
for the ∼1.2 V cell. Full cells built with nickel foam electrodes and sodium-exchanged Nafion 115 membranes deliver a baseline area-specific resistance of 2.7 Ω-cm
2
. Incorporation of high-surface-area cobalt-coated carbon paper and high-surface-area stainless steel mesh electrodes, and an expanded Nafion 115 membrane delivers cells with 44% lower resistance at 1.6 Ω-cm
2
. All cells show performance decay over the course of cycling. The Co-decorated carbon paper electrodes provide significant kinetic improvements, shifting electrode performance from non-linear with Ni-foam to linear with a volume-normalized exchange current density value of 3.2 A cm
−3
. The expanded membrane provides increased conductivity over the 13 mS cm
−1
conductivity observed in as-received, sodium-exchanged Nafion 115. Although boiled membranes provide improved conductivity, it is at the cost of decreased Coulombic efficiency and poorer manufacturability. Full cell models suggest that similar cell resistances (1.7 Ω-cm
2
) should be feasible with as-received Nafion 115 and advanced electrodes.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><language>eng</language><publisher>United States: The Electrochemical Society</publisher><subject>ENERGY STORAGE</subject><ispartof>Journal of the Electrochemical Society, 2021-07, Vol.168 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000277491624 ; 0000000212723607 ; 0000000333138498 ; 0000000296785505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1835333$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Zhiwei</creatorcontrib><creatorcontrib>Gerhardt, Michael R.</creatorcontrib><creatorcontrib>Fortin, Michael</creatorcontrib><creatorcontrib>Shovlin, Christopher</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>Perry, Mike L.</creatorcontrib><creatorcontrib>Darling, Robert M.</creatorcontrib><creatorcontrib>Saraidaridis, James D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Polysulfide-Permanganate Flow Battery Using Abundant Active Materials</title><title>Journal of the Electrochemical Society</title><description>A new flow battery is presented using the abundant and inexpensive active material pairs permanganate/manganate and disulfide/tetrasulfide. A wetted material set is identified for compatibility with the strongly oxidizing manganese couple at ambient and elevated temperatures. Both solutions allow high active material solubility, with cells tested at theoretical energy densities up to 43 Wh l
−1
for the ∼1.2 V cell. Full cells built with nickel foam electrodes and sodium-exchanged Nafion 115 membranes deliver a baseline area-specific resistance of 2.7 Ω-cm
2
. Incorporation of high-surface-area cobalt-coated carbon paper and high-surface-area stainless steel mesh electrodes, and an expanded Nafion 115 membrane delivers cells with 44% lower resistance at 1.6 Ω-cm
2
. All cells show performance decay over the course of cycling. The Co-decorated carbon paper electrodes provide significant kinetic improvements, shifting electrode performance from non-linear with Ni-foam to linear with a volume-normalized exchange current density value of 3.2 A cm
−3
. The expanded membrane provides increased conductivity over the 13 mS cm
−1
conductivity observed in as-received, sodium-exchanged Nafion 115. Although boiled membranes provide improved conductivity, it is at the cost of decreased Coulombic efficiency and poorer manufacturability. Full cell models suggest that similar cell resistances (1.7 Ω-cm
2
) should be feasible with as-received Nafion 115 and advanced electrodes.</description><subject>ENERGY STORAGE</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNissKgkAUQIcoyB7_MLQf8KKmLS2UNoGLWss0Xm1imgHnWvj3uegDOpvDgTNjARziRKQAMGdBGEIk4n0CS7by_jklZHEasKJyZvSDaXWDosL-JW0nrSTkpXEffpRE2I_85rXteH4fbCMt8VyRfiO_TF-vpfEbtmgn4fbnNduVxfV0Fs6Trr3ShOqhnLWoqIYsSqKJv6YvGkw8PA</recordid><startdate>20210709</startdate><enddate>20210709</enddate><creator>Yang, Zhiwei</creator><creator>Gerhardt, Michael R.</creator><creator>Fortin, Michael</creator><creator>Shovlin, Christopher</creator><creator>Weber, Adam Z.</creator><creator>Perry, Mike L.</creator><creator>Darling, Robert M.</creator><creator>Saraidaridis, James D.</creator><general>The Electrochemical Society</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000212723607</orcidid><orcidid>https://orcid.org/0000000333138498</orcidid><orcidid>https://orcid.org/0000000296785505</orcidid></search><sort><creationdate>20210709</creationdate><title>Polysulfide-Permanganate Flow Battery Using Abundant Active Materials</title><author>Yang, Zhiwei ; Gerhardt, Michael R. ; Fortin, Michael ; Shovlin, Christopher ; Weber, Adam Z. ; Perry, Mike L. ; Darling, Robert M. ; Saraidaridis, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18353333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ENERGY STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhiwei</creatorcontrib><creatorcontrib>Gerhardt, Michael R.</creatorcontrib><creatorcontrib>Fortin, Michael</creatorcontrib><creatorcontrib>Shovlin, Christopher</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>Perry, Mike L.</creatorcontrib><creatorcontrib>Darling, Robert M.</creatorcontrib><creatorcontrib>Saraidaridis, James D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhiwei</au><au>Gerhardt, Michael R.</au><au>Fortin, Michael</au><au>Shovlin, Christopher</au><au>Weber, Adam Z.</au><au>Perry, Mike L.</au><au>Darling, Robert M.</au><au>Saraidaridis, James D.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polysulfide-Permanganate Flow Battery Using Abundant Active Materials</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2021-07-09</date><risdate>2021</risdate><volume>168</volume><issue>7</issue><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>A new flow battery is presented using the abundant and inexpensive active material pairs permanganate/manganate and disulfide/tetrasulfide. A wetted material set is identified for compatibility with the strongly oxidizing manganese couple at ambient and elevated temperatures. Both solutions allow high active material solubility, with cells tested at theoretical energy densities up to 43 Wh l
−1
for the ∼1.2 V cell. Full cells built with nickel foam electrodes and sodium-exchanged Nafion 115 membranes deliver a baseline area-specific resistance of 2.7 Ω-cm
2
. Incorporation of high-surface-area cobalt-coated carbon paper and high-surface-area stainless steel mesh electrodes, and an expanded Nafion 115 membrane delivers cells with 44% lower resistance at 1.6 Ω-cm
2
. All cells show performance decay over the course of cycling. The Co-decorated carbon paper electrodes provide significant kinetic improvements, shifting electrode performance from non-linear with Ni-foam to linear with a volume-normalized exchange current density value of 3.2 A cm
−3
. The expanded membrane provides increased conductivity over the 13 mS cm
−1
conductivity observed in as-received, sodium-exchanged Nafion 115. Although boiled membranes provide improved conductivity, it is at the cost of decreased Coulombic efficiency and poorer manufacturability. Full cell models suggest that similar cell resistances (1.7 Ω-cm
2
) should be feasible with as-received Nafion 115 and advanced electrodes.</abstract><cop>United States</cop><pub>The Electrochemical Society</pub><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000212723607</orcidid><orcidid>https://orcid.org/0000000333138498</orcidid><orcidid>https://orcid.org/0000000296785505</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2021-07, Vol.168 (7) |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_osti_scitechconnect_1835333 |
source | Institute of Physics Journals |
subjects | ENERGY STORAGE |
title | Polysulfide-Permanganate Flow Battery Using Abundant Active Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polysulfide-Permanganate%20Flow%20Battery%20Using%20Abundant%20Active%20Materials&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Yang,%20Zhiwei&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-07-09&rft.volume=168&rft.issue=7&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/&rft_dat=%3Costi%3E1835333%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |