Solar wind contributions to Earth’s oceans

The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature astronomy 2021-12, Vol.5 (12), p.1275-1285
Hauptverfasser: Daly, Luke, Lee, Martin R., Hallis, Lydia J., Ishii, Hope A., Bradley, John P., Bland, Phillip. A., Saxey, David W., Fougerouse, Denis, Rickard, William D. A., Forman, Lucy V., Timms, Nicholas E., Jourdan, Fred, Reddy, Steven M., Salge, Tobias, Quadir, Zakaria, Christou, Evangelos, Cox, Morgan A., Aguiar, Jeffrey A., Hattar, Khalid, Monterrosa, Anthony, Keller, Lindsay P., Christoffersen, Roy, Dukes, Catherine A., Loeffler, Mark J., Thompson, Michelle S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1285
container_issue 12
container_start_page 1275
container_title Nature astronomy
container_volume 5
creator Daly, Luke
Lee, Martin R.
Hallis, Lydia J.
Ishii, Hope A.
Bradley, John P.
Bland, Phillip. A.
Saxey, David W.
Fougerouse, Denis
Rickard, William D. A.
Forman, Lucy V.
Timms, Nicholas E.
Jourdan, Fred
Reddy, Steven M.
Salge, Tobias
Quadir, Zakaria
Christou, Evangelos
Cox, Morgan A.
Aguiar, Jeffrey A.
Hattar, Khalid
Monterrosa, Anthony
Keller, Lindsay P.
Christoffersen, Roy
Dukes, Catherine A.
Loeffler, Mark J.
Thompson, Michelle S.
description The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H + irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m − 3 of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios. Water and hydroxyl enrichment in the solar-wind-irradiated rim of an olivine grain from asteroid Itokawa suggests that its regolith could contain ~20 l m −3 of water from solar wind—a potential water source for airless planetary bodies.
doi_str_mv 10.1038/s41550-021-01487-w
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1834330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609525047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-a434ecbd5c2c6da22241733d7201d3cc893f1f0a53120c2735b549c60347fd793</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWGpfwNWgW0dvcpPJzFJK_YGCC3Ud0kzGTqlJTVKKO1_D1_NJjI6gK1f3Lr5zOHyEHFM4p4D1ReRUCCiB0RIor2W52yMjho0sEatq_89_SCYxrgCANYIipSNydu_XOhS73rWF8S6FfrFNvXexSL6Y6ZCWH2_vsfDGahePyEGn19FOfu6YPF7NHqY35fzu-nZ6OS8NF1UqNUduzaIVhpmq1YwxTiViKxnQFo2pG-xoB1ogZWCYRLEQvDEVIJddKxsck5Oh18fUq2j6ZM0yr3PWJEVr5IiQodMB2gT_srUxqZXfBpd3KVZBI5gALjPFBsoEH2OwndqE_lmHV0VBfdlTgz2V7alve2qXQziEYobdkw2_1f-kPgGkSnDd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609525047</pqid></control><display><type>article</type><title>Solar wind contributions to Earth’s oceans</title><source>Springer Nature - Complete Springer Journals</source><creator>Daly, Luke ; Lee, Martin R. ; Hallis, Lydia J. ; Ishii, Hope A. ; Bradley, John P. ; Bland, Phillip. A. ; Saxey, David W. ; Fougerouse, Denis ; Rickard, William D. A. ; Forman, Lucy V. ; Timms, Nicholas E. ; Jourdan, Fred ; Reddy, Steven M. ; Salge, Tobias ; Quadir, Zakaria ; Christou, Evangelos ; Cox, Morgan A. ; Aguiar, Jeffrey A. ; Hattar, Khalid ; Monterrosa, Anthony ; Keller, Lindsay P. ; Christoffersen, Roy ; Dukes, Catherine A. ; Loeffler, Mark J. ; Thompson, Michelle S.</creator><creatorcontrib>Daly, Luke ; Lee, Martin R. ; Hallis, Lydia J. ; Ishii, Hope A. ; Bradley, John P. ; Bland, Phillip. A. ; Saxey, David W. ; Fougerouse, Denis ; Rickard, William D. A. ; Forman, Lucy V. ; Timms, Nicholas E. ; Jourdan, Fred ; Reddy, Steven M. ; Salge, Tobias ; Quadir, Zakaria ; Christou, Evangelos ; Cox, Morgan A. ; Aguiar, Jeffrey A. ; Hattar, Khalid ; Monterrosa, Anthony ; Keller, Lindsay P. ; Christoffersen, Roy ; Dukes, Catherine A. ; Loeffler, Mark J. ; Thompson, Michelle S. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H + irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m − 3 of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios. Water and hydroxyl enrichment in the solar-wind-irradiated rim of an olivine grain from asteroid Itokawa suggests that its regolith could contain ~20 l m −3 of water from solar wind—a potential water source for airless planetary bodies.</description><identifier>ISSN: 2397-3366</identifier><identifier>EISSN: 2397-3366</identifier><identifier>DOI: 10.1038/s41550-021-01487-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/28 ; 639/33/445/3928 ; 639/33/445/848 ; 704/445/3928 ; Asteroids ; asteroids, comets and Kuiper belt ; Astronomy ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics and Cosmology ; early solar system ; Earth ; Irradiation ; Laboratories ; Light ; Meteors &amp; meteorites ; Microscopy ; Minerals ; Oceans ; Physics ; Physics and Astronomy ; Reservoirs ; Science ; Silicates ; Solar system ; Sun ; Tomography ; Water budget</subject><ispartof>Nature astronomy, 2021-12, Vol.5 (12), p.1275-1285</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-a434ecbd5c2c6da22241733d7201d3cc893f1f0a53120c2735b549c60347fd793</citedby><cites>FETCH-LOGICAL-c456t-a434ecbd5c2c6da22241733d7201d3cc893f1f0a53120c2735b549c60347fd793</cites><orcidid>0000-0001-7433-946X ; 0000-0001-6101-4762 ; 0000-0001-5626-4521 ; 0000-0002-8118-730X ; 0000-0002-7150-4092 ; 0000-0003-3346-1121 ; 0000-0002-7976-5078 ; 0000-0002-4726-5714 ; 0000-0001-6455-8415 ; 000000017433946X ; 000000028118730X ; 0000000156264521 ; 0000000164558415 ; 0000000333461121 ; 0000000279765078 ; 0000000247265714 ; 0000000161014762 ; 0000000271504092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41550-021-01487-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41550-021-01487-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1834330$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Daly, Luke</creatorcontrib><creatorcontrib>Lee, Martin R.</creatorcontrib><creatorcontrib>Hallis, Lydia J.</creatorcontrib><creatorcontrib>Ishii, Hope A.</creatorcontrib><creatorcontrib>Bradley, John P.</creatorcontrib><creatorcontrib>Bland, Phillip. A.</creatorcontrib><creatorcontrib>Saxey, David W.</creatorcontrib><creatorcontrib>Fougerouse, Denis</creatorcontrib><creatorcontrib>Rickard, William D. A.</creatorcontrib><creatorcontrib>Forman, Lucy V.</creatorcontrib><creatorcontrib>Timms, Nicholas E.</creatorcontrib><creatorcontrib>Jourdan, Fred</creatorcontrib><creatorcontrib>Reddy, Steven M.</creatorcontrib><creatorcontrib>Salge, Tobias</creatorcontrib><creatorcontrib>Quadir, Zakaria</creatorcontrib><creatorcontrib>Christou, Evangelos</creatorcontrib><creatorcontrib>Cox, Morgan A.</creatorcontrib><creatorcontrib>Aguiar, Jeffrey A.</creatorcontrib><creatorcontrib>Hattar, Khalid</creatorcontrib><creatorcontrib>Monterrosa, Anthony</creatorcontrib><creatorcontrib>Keller, Lindsay P.</creatorcontrib><creatorcontrib>Christoffersen, Roy</creatorcontrib><creatorcontrib>Dukes, Catherine A.</creatorcontrib><creatorcontrib>Loeffler, Mark J.</creatorcontrib><creatorcontrib>Thompson, Michelle S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Solar wind contributions to Earth’s oceans</title><title>Nature astronomy</title><addtitle>Nat Astron</addtitle><description>The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H + irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m − 3 of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios. Water and hydroxyl enrichment in the solar-wind-irradiated rim of an olivine grain from asteroid Itokawa suggests that its regolith could contain ~20 l m −3 of water from solar wind—a potential water source for airless planetary bodies.</description><subject>14/28</subject><subject>639/33/445/3928</subject><subject>639/33/445/848</subject><subject>704/445/3928</subject><subject>Asteroids</subject><subject>asteroids, comets and Kuiper belt</subject><subject>Astronomy</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics and Cosmology</subject><subject>early solar system</subject><subject>Earth</subject><subject>Irradiation</subject><subject>Laboratories</subject><subject>Light</subject><subject>Meteors &amp; meteorites</subject><subject>Microscopy</subject><subject>Minerals</subject><subject>Oceans</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reservoirs</subject><subject>Science</subject><subject>Silicates</subject><subject>Solar system</subject><subject>Sun</subject><subject>Tomography</subject><subject>Water budget</subject><issn>2397-3366</issn><issn>2397-3366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEUhYMoWGpfwNWgW0dvcpPJzFJK_YGCC3Ud0kzGTqlJTVKKO1_D1_NJjI6gK1f3Lr5zOHyEHFM4p4D1ReRUCCiB0RIor2W52yMjho0sEatq_89_SCYxrgCANYIipSNydu_XOhS73rWF8S6FfrFNvXexSL6Y6ZCWH2_vsfDGahePyEGn19FOfu6YPF7NHqY35fzu-nZ6OS8NF1UqNUduzaIVhpmq1YwxTiViKxnQFo2pG-xoB1ogZWCYRLEQvDEVIJddKxsck5Oh18fUq2j6ZM0yr3PWJEVr5IiQodMB2gT_srUxqZXfBpd3KVZBI5gALjPFBsoEH2OwndqE_lmHV0VBfdlTgz2V7alve2qXQziEYobdkw2_1f-kPgGkSnDd</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Daly, Luke</creator><creator>Lee, Martin R.</creator><creator>Hallis, Lydia J.</creator><creator>Ishii, Hope A.</creator><creator>Bradley, John P.</creator><creator>Bland, Phillip. A.</creator><creator>Saxey, David W.</creator><creator>Fougerouse, Denis</creator><creator>Rickard, William D. A.</creator><creator>Forman, Lucy V.</creator><creator>Timms, Nicholas E.</creator><creator>Jourdan, Fred</creator><creator>Reddy, Steven M.</creator><creator>Salge, Tobias</creator><creator>Quadir, Zakaria</creator><creator>Christou, Evangelos</creator><creator>Cox, Morgan A.</creator><creator>Aguiar, Jeffrey A.</creator><creator>Hattar, Khalid</creator><creator>Monterrosa, Anthony</creator><creator>Keller, Lindsay P.</creator><creator>Christoffersen, Roy</creator><creator>Dukes, Catherine A.</creator><creator>Loeffler, Mark J.</creator><creator>Thompson, Michelle S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7433-946X</orcidid><orcidid>https://orcid.org/0000-0001-6101-4762</orcidid><orcidid>https://orcid.org/0000-0001-5626-4521</orcidid><orcidid>https://orcid.org/0000-0002-8118-730X</orcidid><orcidid>https://orcid.org/0000-0002-7150-4092</orcidid><orcidid>https://orcid.org/0000-0003-3346-1121</orcidid><orcidid>https://orcid.org/0000-0002-7976-5078</orcidid><orcidid>https://orcid.org/0000-0002-4726-5714</orcidid><orcidid>https://orcid.org/0000-0001-6455-8415</orcidid><orcidid>https://orcid.org/000000017433946X</orcidid><orcidid>https://orcid.org/000000028118730X</orcidid><orcidid>https://orcid.org/0000000156264521</orcidid><orcidid>https://orcid.org/0000000164558415</orcidid><orcidid>https://orcid.org/0000000333461121</orcidid><orcidid>https://orcid.org/0000000279765078</orcidid><orcidid>https://orcid.org/0000000247265714</orcidid><orcidid>https://orcid.org/0000000161014762</orcidid><orcidid>https://orcid.org/0000000271504092</orcidid></search><sort><creationdate>20211201</creationdate><title>Solar wind contributions to Earth’s oceans</title><author>Daly, Luke ; Lee, Martin R. ; Hallis, Lydia J. ; Ishii, Hope A. ; Bradley, John P. ; Bland, Phillip. A. ; Saxey, David W. ; Fougerouse, Denis ; Rickard, William D. A. ; Forman, Lucy V. ; Timms, Nicholas E. ; Jourdan, Fred ; Reddy, Steven M. ; Salge, Tobias ; Quadir, Zakaria ; Christou, Evangelos ; Cox, Morgan A. ; Aguiar, Jeffrey A. ; Hattar, Khalid ; Monterrosa, Anthony ; Keller, Lindsay P. ; Christoffersen, Roy ; Dukes, Catherine A. ; Loeffler, Mark J. ; Thompson, Michelle S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-a434ecbd5c2c6da22241733d7201d3cc893f1f0a53120c2735b549c60347fd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/28</topic><topic>639/33/445/3928</topic><topic>639/33/445/848</topic><topic>704/445/3928</topic><topic>Asteroids</topic><topic>asteroids, comets and Kuiper belt</topic><topic>Astronomy</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics and Cosmology</topic><topic>early solar system</topic><topic>Earth</topic><topic>Irradiation</topic><topic>Laboratories</topic><topic>Light</topic><topic>Meteors &amp; meteorites</topic><topic>Microscopy</topic><topic>Minerals</topic><topic>Oceans</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reservoirs</topic><topic>Science</topic><topic>Silicates</topic><topic>Solar system</topic><topic>Sun</topic><topic>Tomography</topic><topic>Water budget</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daly, Luke</creatorcontrib><creatorcontrib>Lee, Martin R.</creatorcontrib><creatorcontrib>Hallis, Lydia J.</creatorcontrib><creatorcontrib>Ishii, Hope A.</creatorcontrib><creatorcontrib>Bradley, John P.</creatorcontrib><creatorcontrib>Bland, Phillip. A.</creatorcontrib><creatorcontrib>Saxey, David W.</creatorcontrib><creatorcontrib>Fougerouse, Denis</creatorcontrib><creatorcontrib>Rickard, William D. A.</creatorcontrib><creatorcontrib>Forman, Lucy V.</creatorcontrib><creatorcontrib>Timms, Nicholas E.</creatorcontrib><creatorcontrib>Jourdan, Fred</creatorcontrib><creatorcontrib>Reddy, Steven M.</creatorcontrib><creatorcontrib>Salge, Tobias</creatorcontrib><creatorcontrib>Quadir, Zakaria</creatorcontrib><creatorcontrib>Christou, Evangelos</creatorcontrib><creatorcontrib>Cox, Morgan A.</creatorcontrib><creatorcontrib>Aguiar, Jeffrey A.</creatorcontrib><creatorcontrib>Hattar, Khalid</creatorcontrib><creatorcontrib>Monterrosa, Anthony</creatorcontrib><creatorcontrib>Keller, Lindsay P.</creatorcontrib><creatorcontrib>Christoffersen, Roy</creatorcontrib><creatorcontrib>Dukes, Catherine A.</creatorcontrib><creatorcontrib>Loeffler, Mark J.</creatorcontrib><creatorcontrib>Thompson, Michelle S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daly, Luke</au><au>Lee, Martin R.</au><au>Hallis, Lydia J.</au><au>Ishii, Hope A.</au><au>Bradley, John P.</au><au>Bland, Phillip. A.</au><au>Saxey, David W.</au><au>Fougerouse, Denis</au><au>Rickard, William D. A.</au><au>Forman, Lucy V.</au><au>Timms, Nicholas E.</au><au>Jourdan, Fred</au><au>Reddy, Steven M.</au><au>Salge, Tobias</au><au>Quadir, Zakaria</au><au>Christou, Evangelos</au><au>Cox, Morgan A.</au><au>Aguiar, Jeffrey A.</au><au>Hattar, Khalid</au><au>Monterrosa, Anthony</au><au>Keller, Lindsay P.</au><au>Christoffersen, Roy</au><au>Dukes, Catherine A.</au><au>Loeffler, Mark J.</au><au>Thompson, Michelle S.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar wind contributions to Earth’s oceans</atitle><jtitle>Nature astronomy</jtitle><stitle>Nat Astron</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>5</volume><issue>12</issue><spage>1275</spage><epage>1285</epage><pages>1275-1285</pages><issn>2397-3366</issn><eissn>2397-3366</eissn><abstract>The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H + irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m − 3 of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios. Water and hydroxyl enrichment in the solar-wind-irradiated rim of an olivine grain from asteroid Itokawa suggests that its regolith could contain ~20 l m −3 of water from solar wind—a potential water source for airless planetary bodies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41550-021-01487-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7433-946X</orcidid><orcidid>https://orcid.org/0000-0001-6101-4762</orcidid><orcidid>https://orcid.org/0000-0001-5626-4521</orcidid><orcidid>https://orcid.org/0000-0002-8118-730X</orcidid><orcidid>https://orcid.org/0000-0002-7150-4092</orcidid><orcidid>https://orcid.org/0000-0003-3346-1121</orcidid><orcidid>https://orcid.org/0000-0002-7976-5078</orcidid><orcidid>https://orcid.org/0000-0002-4726-5714</orcidid><orcidid>https://orcid.org/0000-0001-6455-8415</orcidid><orcidid>https://orcid.org/000000017433946X</orcidid><orcidid>https://orcid.org/000000028118730X</orcidid><orcidid>https://orcid.org/0000000156264521</orcidid><orcidid>https://orcid.org/0000000164558415</orcidid><orcidid>https://orcid.org/0000000333461121</orcidid><orcidid>https://orcid.org/0000000279765078</orcidid><orcidid>https://orcid.org/0000000247265714</orcidid><orcidid>https://orcid.org/0000000161014762</orcidid><orcidid>https://orcid.org/0000000271504092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-3366
ispartof Nature astronomy, 2021-12, Vol.5 (12), p.1275-1285
issn 2397-3366
2397-3366
language eng
recordid cdi_osti_scitechconnect_1834330
source Springer Nature - Complete Springer Journals
subjects 14/28
639/33/445/3928
639/33/445/848
704/445/3928
Asteroids
asteroids, comets and Kuiper belt
Astronomy
ASTRONOMY AND ASTROPHYSICS
Astrophysics and Cosmology
early solar system
Earth
Irradiation
Laboratories
Light
Meteors & meteorites
Microscopy
Minerals
Oceans
Physics
Physics and Astronomy
Reservoirs
Science
Silicates
Solar system
Sun
Tomography
Water budget
title Solar wind contributions to Earth’s oceans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20wind%20contributions%20to%20Earth%E2%80%99s%20oceans&rft.jtitle=Nature%20astronomy&rft.au=Daly,%20Luke&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-12-01&rft.volume=5&rft.issue=12&rft.spage=1275&rft.epage=1285&rft.pages=1275-1285&rft.issn=2397-3366&rft.eissn=2397-3366&rft_id=info:doi/10.1038/s41550-021-01487-w&rft_dat=%3Cproquest_osti_%3E2609525047%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609525047&rft_id=info:pmid/&rfr_iscdi=true