Solar wind contributions to Earth’s oceans
The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used a...
Gespeichert in:
Veröffentlicht in: | Nature astronomy 2021-12, Vol.5 (12), p.1275-1285 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1285 |
---|---|
container_issue | 12 |
container_start_page | 1275 |
container_title | Nature astronomy |
container_volume | 5 |
creator | Daly, Luke Lee, Martin R. Hallis, Lydia J. Ishii, Hope A. Bradley, John P. Bland, Phillip. A. Saxey, David W. Fougerouse, Denis Rickard, William D. A. Forman, Lucy V. Timms, Nicholas E. Jourdan, Fred Reddy, Steven M. Salge, Tobias Quadir, Zakaria Christou, Evangelos Cox, Morgan A. Aguiar, Jeffrey A. Hattar, Khalid Monterrosa, Anthony Keller, Lindsay P. Christoffersen, Roy Dukes, Catherine A. Loeffler, Mark J. Thompson, Michelle S. |
description | The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H
+
irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m
−
3
of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios.
Water and hydroxyl enrichment in the solar-wind-irradiated rim of an olivine grain from asteroid Itokawa suggests that its regolith could contain ~20 l m
−3
of water from solar wind—a potential water source for airless planetary bodies. |
doi_str_mv | 10.1038/s41550-021-01487-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1834330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609525047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-a434ecbd5c2c6da22241733d7201d3cc893f1f0a53120c2735b549c60347fd793</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWGpfwNWgW0dvcpPJzFJK_YGCC3Ud0kzGTqlJTVKKO1_D1_NJjI6gK1f3Lr5zOHyEHFM4p4D1ReRUCCiB0RIor2W52yMjho0sEatq_89_SCYxrgCANYIipSNydu_XOhS73rWF8S6FfrFNvXexSL6Y6ZCWH2_vsfDGahePyEGn19FOfu6YPF7NHqY35fzu-nZ6OS8NF1UqNUduzaIVhpmq1YwxTiViKxnQFo2pG-xoB1ogZWCYRLEQvDEVIJddKxsck5Oh18fUq2j6ZM0yr3PWJEVr5IiQodMB2gT_srUxqZXfBpd3KVZBI5gALjPFBsoEH2OwndqE_lmHV0VBfdlTgz2V7alve2qXQziEYobdkw2_1f-kPgGkSnDd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609525047</pqid></control><display><type>article</type><title>Solar wind contributions to Earth’s oceans</title><source>Springer Nature - Complete Springer Journals</source><creator>Daly, Luke ; Lee, Martin R. ; Hallis, Lydia J. ; Ishii, Hope A. ; Bradley, John P. ; Bland, Phillip. A. ; Saxey, David W. ; Fougerouse, Denis ; Rickard, William D. A. ; Forman, Lucy V. ; Timms, Nicholas E. ; Jourdan, Fred ; Reddy, Steven M. ; Salge, Tobias ; Quadir, Zakaria ; Christou, Evangelos ; Cox, Morgan A. ; Aguiar, Jeffrey A. ; Hattar, Khalid ; Monterrosa, Anthony ; Keller, Lindsay P. ; Christoffersen, Roy ; Dukes, Catherine A. ; Loeffler, Mark J. ; Thompson, Michelle S.</creator><creatorcontrib>Daly, Luke ; Lee, Martin R. ; Hallis, Lydia J. ; Ishii, Hope A. ; Bradley, John P. ; Bland, Phillip. A. ; Saxey, David W. ; Fougerouse, Denis ; Rickard, William D. A. ; Forman, Lucy V. ; Timms, Nicholas E. ; Jourdan, Fred ; Reddy, Steven M. ; Salge, Tobias ; Quadir, Zakaria ; Christou, Evangelos ; Cox, Morgan A. ; Aguiar, Jeffrey A. ; Hattar, Khalid ; Monterrosa, Anthony ; Keller, Lindsay P. ; Christoffersen, Roy ; Dukes, Catherine A. ; Loeffler, Mark J. ; Thompson, Michelle S. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H
+
irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m
−
3
of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios.
Water and hydroxyl enrichment in the solar-wind-irradiated rim of an olivine grain from asteroid Itokawa suggests that its regolith could contain ~20 l m
−3
of water from solar wind—a potential water source for airless planetary bodies.</description><identifier>ISSN: 2397-3366</identifier><identifier>EISSN: 2397-3366</identifier><identifier>DOI: 10.1038/s41550-021-01487-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/28 ; 639/33/445/3928 ; 639/33/445/848 ; 704/445/3928 ; Asteroids ; asteroids, comets and Kuiper belt ; Astronomy ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics and Cosmology ; early solar system ; Earth ; Irradiation ; Laboratories ; Light ; Meteors & meteorites ; Microscopy ; Minerals ; Oceans ; Physics ; Physics and Astronomy ; Reservoirs ; Science ; Silicates ; Solar system ; Sun ; Tomography ; Water budget</subject><ispartof>Nature astronomy, 2021-12, Vol.5 (12), p.1275-1285</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-a434ecbd5c2c6da22241733d7201d3cc893f1f0a53120c2735b549c60347fd793</citedby><cites>FETCH-LOGICAL-c456t-a434ecbd5c2c6da22241733d7201d3cc893f1f0a53120c2735b549c60347fd793</cites><orcidid>0000-0001-7433-946X ; 0000-0001-6101-4762 ; 0000-0001-5626-4521 ; 0000-0002-8118-730X ; 0000-0002-7150-4092 ; 0000-0003-3346-1121 ; 0000-0002-7976-5078 ; 0000-0002-4726-5714 ; 0000-0001-6455-8415 ; 000000017433946X ; 000000028118730X ; 0000000156264521 ; 0000000164558415 ; 0000000333461121 ; 0000000279765078 ; 0000000247265714 ; 0000000161014762 ; 0000000271504092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41550-021-01487-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41550-021-01487-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1834330$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Daly, Luke</creatorcontrib><creatorcontrib>Lee, Martin R.</creatorcontrib><creatorcontrib>Hallis, Lydia J.</creatorcontrib><creatorcontrib>Ishii, Hope A.</creatorcontrib><creatorcontrib>Bradley, John P.</creatorcontrib><creatorcontrib>Bland, Phillip. A.</creatorcontrib><creatorcontrib>Saxey, David W.</creatorcontrib><creatorcontrib>Fougerouse, Denis</creatorcontrib><creatorcontrib>Rickard, William D. A.</creatorcontrib><creatorcontrib>Forman, Lucy V.</creatorcontrib><creatorcontrib>Timms, Nicholas E.</creatorcontrib><creatorcontrib>Jourdan, Fred</creatorcontrib><creatorcontrib>Reddy, Steven M.</creatorcontrib><creatorcontrib>Salge, Tobias</creatorcontrib><creatorcontrib>Quadir, Zakaria</creatorcontrib><creatorcontrib>Christou, Evangelos</creatorcontrib><creatorcontrib>Cox, Morgan A.</creatorcontrib><creatorcontrib>Aguiar, Jeffrey A.</creatorcontrib><creatorcontrib>Hattar, Khalid</creatorcontrib><creatorcontrib>Monterrosa, Anthony</creatorcontrib><creatorcontrib>Keller, Lindsay P.</creatorcontrib><creatorcontrib>Christoffersen, Roy</creatorcontrib><creatorcontrib>Dukes, Catherine A.</creatorcontrib><creatorcontrib>Loeffler, Mark J.</creatorcontrib><creatorcontrib>Thompson, Michelle S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Solar wind contributions to Earth’s oceans</title><title>Nature astronomy</title><addtitle>Nat Astron</addtitle><description>The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H
+
irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m
−
3
of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios.
Water and hydroxyl enrichment in the solar-wind-irradiated rim of an olivine grain from asteroid Itokawa suggests that its regolith could contain ~20 l m
−3
of water from solar wind—a potential water source for airless planetary bodies.</description><subject>14/28</subject><subject>639/33/445/3928</subject><subject>639/33/445/848</subject><subject>704/445/3928</subject><subject>Asteroids</subject><subject>asteroids, comets and Kuiper belt</subject><subject>Astronomy</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics and Cosmology</subject><subject>early solar system</subject><subject>Earth</subject><subject>Irradiation</subject><subject>Laboratories</subject><subject>Light</subject><subject>Meteors & meteorites</subject><subject>Microscopy</subject><subject>Minerals</subject><subject>Oceans</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reservoirs</subject><subject>Science</subject><subject>Silicates</subject><subject>Solar system</subject><subject>Sun</subject><subject>Tomography</subject><subject>Water budget</subject><issn>2397-3366</issn><issn>2397-3366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEUhYMoWGpfwNWgW0dvcpPJzFJK_YGCC3Ud0kzGTqlJTVKKO1_D1_NJjI6gK1f3Lr5zOHyEHFM4p4D1ReRUCCiB0RIor2W52yMjho0sEatq_89_SCYxrgCANYIipSNydu_XOhS73rWF8S6FfrFNvXexSL6Y6ZCWH2_vsfDGahePyEGn19FOfu6YPF7NHqY35fzu-nZ6OS8NF1UqNUduzaIVhpmq1YwxTiViKxnQFo2pG-xoB1ogZWCYRLEQvDEVIJddKxsck5Oh18fUq2j6ZM0yr3PWJEVr5IiQodMB2gT_srUxqZXfBpd3KVZBI5gALjPFBsoEH2OwndqE_lmHV0VBfdlTgz2V7alve2qXQziEYobdkw2_1f-kPgGkSnDd</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Daly, Luke</creator><creator>Lee, Martin R.</creator><creator>Hallis, Lydia J.</creator><creator>Ishii, Hope A.</creator><creator>Bradley, John P.</creator><creator>Bland, Phillip. A.</creator><creator>Saxey, David W.</creator><creator>Fougerouse, Denis</creator><creator>Rickard, William D. A.</creator><creator>Forman, Lucy V.</creator><creator>Timms, Nicholas E.</creator><creator>Jourdan, Fred</creator><creator>Reddy, Steven M.</creator><creator>Salge, Tobias</creator><creator>Quadir, Zakaria</creator><creator>Christou, Evangelos</creator><creator>Cox, Morgan A.</creator><creator>Aguiar, Jeffrey A.</creator><creator>Hattar, Khalid</creator><creator>Monterrosa, Anthony</creator><creator>Keller, Lindsay P.</creator><creator>Christoffersen, Roy</creator><creator>Dukes, Catherine A.</creator><creator>Loeffler, Mark J.</creator><creator>Thompson, Michelle S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7433-946X</orcidid><orcidid>https://orcid.org/0000-0001-6101-4762</orcidid><orcidid>https://orcid.org/0000-0001-5626-4521</orcidid><orcidid>https://orcid.org/0000-0002-8118-730X</orcidid><orcidid>https://orcid.org/0000-0002-7150-4092</orcidid><orcidid>https://orcid.org/0000-0003-3346-1121</orcidid><orcidid>https://orcid.org/0000-0002-7976-5078</orcidid><orcidid>https://orcid.org/0000-0002-4726-5714</orcidid><orcidid>https://orcid.org/0000-0001-6455-8415</orcidid><orcidid>https://orcid.org/000000017433946X</orcidid><orcidid>https://orcid.org/000000028118730X</orcidid><orcidid>https://orcid.org/0000000156264521</orcidid><orcidid>https://orcid.org/0000000164558415</orcidid><orcidid>https://orcid.org/0000000333461121</orcidid><orcidid>https://orcid.org/0000000279765078</orcidid><orcidid>https://orcid.org/0000000247265714</orcidid><orcidid>https://orcid.org/0000000161014762</orcidid><orcidid>https://orcid.org/0000000271504092</orcidid></search><sort><creationdate>20211201</creationdate><title>Solar wind contributions to Earth’s oceans</title><author>Daly, Luke ; Lee, Martin R. ; Hallis, Lydia J. ; Ishii, Hope A. ; Bradley, John P. ; Bland, Phillip. A. ; Saxey, David W. ; Fougerouse, Denis ; Rickard, William D. A. ; Forman, Lucy V. ; Timms, Nicholas E. ; Jourdan, Fred ; Reddy, Steven M. ; Salge, Tobias ; Quadir, Zakaria ; Christou, Evangelos ; Cox, Morgan A. ; Aguiar, Jeffrey A. ; Hattar, Khalid ; Monterrosa, Anthony ; Keller, Lindsay P. ; Christoffersen, Roy ; Dukes, Catherine A. ; Loeffler, Mark J. ; Thompson, Michelle S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-a434ecbd5c2c6da22241733d7201d3cc893f1f0a53120c2735b549c60347fd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/28</topic><topic>639/33/445/3928</topic><topic>639/33/445/848</topic><topic>704/445/3928</topic><topic>Asteroids</topic><topic>asteroids, comets and Kuiper belt</topic><topic>Astronomy</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics and Cosmology</topic><topic>early solar system</topic><topic>Earth</topic><topic>Irradiation</topic><topic>Laboratories</topic><topic>Light</topic><topic>Meteors & meteorites</topic><topic>Microscopy</topic><topic>Minerals</topic><topic>Oceans</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reservoirs</topic><topic>Science</topic><topic>Silicates</topic><topic>Solar system</topic><topic>Sun</topic><topic>Tomography</topic><topic>Water budget</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daly, Luke</creatorcontrib><creatorcontrib>Lee, Martin R.</creatorcontrib><creatorcontrib>Hallis, Lydia J.</creatorcontrib><creatorcontrib>Ishii, Hope A.</creatorcontrib><creatorcontrib>Bradley, John P.</creatorcontrib><creatorcontrib>Bland, Phillip. A.</creatorcontrib><creatorcontrib>Saxey, David W.</creatorcontrib><creatorcontrib>Fougerouse, Denis</creatorcontrib><creatorcontrib>Rickard, William D. A.</creatorcontrib><creatorcontrib>Forman, Lucy V.</creatorcontrib><creatorcontrib>Timms, Nicholas E.</creatorcontrib><creatorcontrib>Jourdan, Fred</creatorcontrib><creatorcontrib>Reddy, Steven M.</creatorcontrib><creatorcontrib>Salge, Tobias</creatorcontrib><creatorcontrib>Quadir, Zakaria</creatorcontrib><creatorcontrib>Christou, Evangelos</creatorcontrib><creatorcontrib>Cox, Morgan A.</creatorcontrib><creatorcontrib>Aguiar, Jeffrey A.</creatorcontrib><creatorcontrib>Hattar, Khalid</creatorcontrib><creatorcontrib>Monterrosa, Anthony</creatorcontrib><creatorcontrib>Keller, Lindsay P.</creatorcontrib><creatorcontrib>Christoffersen, Roy</creatorcontrib><creatorcontrib>Dukes, Catherine A.</creatorcontrib><creatorcontrib>Loeffler, Mark J.</creatorcontrib><creatorcontrib>Thompson, Michelle S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daly, Luke</au><au>Lee, Martin R.</au><au>Hallis, Lydia J.</au><au>Ishii, Hope A.</au><au>Bradley, John P.</au><au>Bland, Phillip. A.</au><au>Saxey, David W.</au><au>Fougerouse, Denis</au><au>Rickard, William D. A.</au><au>Forman, Lucy V.</au><au>Timms, Nicholas E.</au><au>Jourdan, Fred</au><au>Reddy, Steven M.</au><au>Salge, Tobias</au><au>Quadir, Zakaria</au><au>Christou, Evangelos</au><au>Cox, Morgan A.</au><au>Aguiar, Jeffrey A.</au><au>Hattar, Khalid</au><au>Monterrosa, Anthony</au><au>Keller, Lindsay P.</au><au>Christoffersen, Roy</au><au>Dukes, Catherine A.</au><au>Loeffler, Mark J.</au><au>Thompson, Michelle S.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar wind contributions to Earth’s oceans</atitle><jtitle>Nature astronomy</jtitle><stitle>Nat Astron</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>5</volume><issue>12</issue><spage>1275</spage><epage>1285</epage><pages>1275-1285</pages><issn>2397-3366</issn><eissn>2397-3366</eissn><abstract>The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H
+
irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m
−
3
of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios.
Water and hydroxyl enrichment in the solar-wind-irradiated rim of an olivine grain from asteroid Itokawa suggests that its regolith could contain ~20 l m
−3
of water from solar wind—a potential water source for airless planetary bodies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41550-021-01487-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7433-946X</orcidid><orcidid>https://orcid.org/0000-0001-6101-4762</orcidid><orcidid>https://orcid.org/0000-0001-5626-4521</orcidid><orcidid>https://orcid.org/0000-0002-8118-730X</orcidid><orcidid>https://orcid.org/0000-0002-7150-4092</orcidid><orcidid>https://orcid.org/0000-0003-3346-1121</orcidid><orcidid>https://orcid.org/0000-0002-7976-5078</orcidid><orcidid>https://orcid.org/0000-0002-4726-5714</orcidid><orcidid>https://orcid.org/0000-0001-6455-8415</orcidid><orcidid>https://orcid.org/000000017433946X</orcidid><orcidid>https://orcid.org/000000028118730X</orcidid><orcidid>https://orcid.org/0000000156264521</orcidid><orcidid>https://orcid.org/0000000164558415</orcidid><orcidid>https://orcid.org/0000000333461121</orcidid><orcidid>https://orcid.org/0000000279765078</orcidid><orcidid>https://orcid.org/0000000247265714</orcidid><orcidid>https://orcid.org/0000000161014762</orcidid><orcidid>https://orcid.org/0000000271504092</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-3366 |
ispartof | Nature astronomy, 2021-12, Vol.5 (12), p.1275-1285 |
issn | 2397-3366 2397-3366 |
language | eng |
recordid | cdi_osti_scitechconnect_1834330 |
source | Springer Nature - Complete Springer Journals |
subjects | 14/28 639/33/445/3928 639/33/445/848 704/445/3928 Asteroids asteroids, comets and Kuiper belt Astronomy ASTRONOMY AND ASTROPHYSICS Astrophysics and Cosmology early solar system Earth Irradiation Laboratories Light Meteors & meteorites Microscopy Minerals Oceans Physics Physics and Astronomy Reservoirs Science Silicates Solar system Sun Tomography Water budget |
title | Solar wind contributions to Earth’s oceans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20wind%20contributions%20to%20Earth%E2%80%99s%20oceans&rft.jtitle=Nature%20astronomy&rft.au=Daly,%20Luke&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-12-01&rft.volume=5&rft.issue=12&rft.spage=1275&rft.epage=1285&rft.pages=1275-1285&rft.issn=2397-3366&rft.eissn=2397-3366&rft_id=info:doi/10.1038/s41550-021-01487-w&rft_dat=%3Cproquest_osti_%3E2609525047%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609525047&rft_id=info:pmid/&rfr_iscdi=true |