Angular clustering properties of the DESI QSO target selection using DR9 Legacy Imaging Surveys

ABSTRACT The quasar target selection for the upcoming survey of the Dark Energy Spectroscopic Instrument (DESI) will be fixed for the next 5 yr. The aim of this work is to validate the quasar selection by studying the impact of imaging systematics as well as stellar and galactic contaminants, and to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mon.Not.Roy.Astron.Soc 2022-01, Vol.509 (3), p.3904-3923
Hauptverfasser: Chaussidon, Edmond, Yèche, Christophe, Palanque-Delabrouille, Nathalie, de Mattia, Arnaud, Myers, Adam D, Rezaie, Mehdi, Ross, Ashley J, Seo, Hee-Jong, Brooks, David, Gaztañaga, Enrique, Kehoe, Robert, Levi, Michael E, Newman, Jeffrey A, Tarlé, Gregory, Zhang, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3923
container_issue 3
container_start_page 3904
container_title Mon.Not.Roy.Astron.Soc
container_volume 509
creator Chaussidon, Edmond
Yèche, Christophe
Palanque-Delabrouille, Nathalie
de Mattia, Arnaud
Myers, Adam D
Rezaie, Mehdi
Ross, Ashley J
Seo, Hee-Jong
Brooks, David
Gaztañaga, Enrique
Kehoe, Robert
Levi, Michael E
Newman, Jeffrey A
Tarlé, Gregory
Zhang, Kai
description ABSTRACT The quasar target selection for the upcoming survey of the Dark Energy Spectroscopic Instrument (DESI) will be fixed for the next 5 yr. The aim of this work is to validate the quasar selection by studying the impact of imaging systematics as well as stellar and galactic contaminants, and to develop a procedure to mitigate them. Density fluctuations of quasar targets are found to be related to photometric properties such as seeing and depth of the Data Release 9 of the DESI Legacy Imaging Surveys. To model this complex relation, we explore machine learning algorithms (random forest and multilayer perceptron) as an alternative to the standard linear regression. Splitting the footprint of the Legacy Imaging Surveys into three regions according to photometric properties, we perform an independent analysis in each region, validating our method using extended Baryon Oscillation Spectroscopic Survey (eBOSS) EZ-mocks. The mitigation procedure is tested by comparing the angular correlation of the corrected target selection on each photometric region to the angular correlation function obtained using quasars from the Sloan Digital Sky Survey (SDSS) Data Release 16. With our procedure, we recover a similar level of correlation between DESI quasar targets and SDSS quasars in two-thirds of the total footprint and we show that the excess of correlation in the remaining area is due to a stellar contamination that should be removed with DESI spectroscopic data. We derive the Limber parameters in our three imaging regions and compare them to previous measurements from SDSS and the 2dF QSO Redshift Survey.
doi_str_mv 10.1093/mnras/stab3252
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_osti_scitechconnect_1834211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab3252</oup_id><sourcerecordid>10.1093/mnras/stab3252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-912668b5a58ba662740ae35dafdc1d397f09b87416c18b7fed84e024b6309b8e3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqVw5Wxx45DWj8RJjlVbaKVIFRTOluNs0qA0jmynUv89DeVx5LTS7Dezq0HonpIJJSmf7lur3NR5lXMWsQs0olxEAUuFuEQjQngUJDGl1-jGuQ9CSMiZGCE5a6u-URbrpncebN1WuLOmA-trcNiU2O8AL5bbNX7ZbrBXtgKPHTSgfW1a3LvBsXhNcQaV0ke83qtqkLa9PcDR3aKrUjUO7r7nGL0_Ld_mqyDbPK_nsyzQnIc-SCkTIskjFSW5EoLFIVHAo0KVhaYFT-OSpHkSh1RomuRxCUUSAmFhLviwAD5GD-dc43wtna496J02bXv6U9KEh4zSE_R4hnaqkZ2t98oepVG1XM0yOWiE89NpSg8DOzmz2hrnLJS_Bkrk0Lf86lv-9P0XbvruP_YTA3aCgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Angular clustering properties of the DESI QSO target selection using DR9 Legacy Imaging Surveys</title><source>Oxford Journals Open Access Collection</source><creator>Chaussidon, Edmond ; Yèche, Christophe ; Palanque-Delabrouille, Nathalie ; de Mattia, Arnaud ; Myers, Adam D ; Rezaie, Mehdi ; Ross, Ashley J ; Seo, Hee-Jong ; Brooks, David ; Gaztañaga, Enrique ; Kehoe, Robert ; Levi, Michael E ; Newman, Jeffrey A ; Tarlé, Gregory ; Zhang, Kai</creator><creatorcontrib>Chaussidon, Edmond ; Yèche, Christophe ; Palanque-Delabrouille, Nathalie ; de Mattia, Arnaud ; Myers, Adam D ; Rezaie, Mehdi ; Ross, Ashley J ; Seo, Hee-Jong ; Brooks, David ; Gaztañaga, Enrique ; Kehoe, Robert ; Levi, Michael E ; Newman, Jeffrey A ; Tarlé, Gregory ; Zhang, Kai ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><description>ABSTRACT The quasar target selection for the upcoming survey of the Dark Energy Spectroscopic Instrument (DESI) will be fixed for the next 5 yr. The aim of this work is to validate the quasar selection by studying the impact of imaging systematics as well as stellar and galactic contaminants, and to develop a procedure to mitigate them. Density fluctuations of quasar targets are found to be related to photometric properties such as seeing and depth of the Data Release 9 of the DESI Legacy Imaging Surveys. To model this complex relation, we explore machine learning algorithms (random forest and multilayer perceptron) as an alternative to the standard linear regression. Splitting the footprint of the Legacy Imaging Surveys into three regions according to photometric properties, we perform an independent analysis in each region, validating our method using extended Baryon Oscillation Spectroscopic Survey (eBOSS) EZ-mocks. The mitigation procedure is tested by comparing the angular correlation of the corrected target selection on each photometric region to the angular correlation function obtained using quasars from the Sloan Digital Sky Survey (SDSS) Data Release 16. With our procedure, we recover a similar level of correlation between DESI quasar targets and SDSS quasars in two-thirds of the total footprint and we show that the excess of correlation in the remaining area is due to a stellar contamination that should be removed with DESI spectroscopic data. We derive the Limber parameters in our three imaging regions and compare them to previous measurements from SDSS and the 2dF QSO Redshift Survey.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab3252</identifier><language>eng</language><publisher>United Kingdom: Oxford University Press</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; cosmology ; dark energy ; data analysis ; Data Analysis, Statistics and Probability ; Instrumentation and Detectors ; large scale structure of Universe ; observations ; Physics ; surveys</subject><ispartof>Mon.Not.Roy.Astron.Soc, 2022-01, Vol.509 (3), p.3904-3923</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-912668b5a58ba662740ae35dafdc1d397f09b87416c18b7fed84e024b6309b8e3</citedby><cites>FETCH-LOGICAL-c334t-912668b5a58ba662740ae35dafdc1d397f09b87416c18b7fed84e024b6309b8e3</cites><orcidid>0000-0001-8996-4874 ; 0000-0002-6588-3508 ; 0000-0001-5589-7116 ; 0000-0002-0068-8197 ; 0000-0002-6758-2186 ; 0000000189964874 ; 0000000155897116 ; 0000000265883508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab3252$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-03327411$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1834211$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaussidon, Edmond</creatorcontrib><creatorcontrib>Yèche, Christophe</creatorcontrib><creatorcontrib>Palanque-Delabrouille, Nathalie</creatorcontrib><creatorcontrib>de Mattia, Arnaud</creatorcontrib><creatorcontrib>Myers, Adam D</creatorcontrib><creatorcontrib>Rezaie, Mehdi</creatorcontrib><creatorcontrib>Ross, Ashley J</creatorcontrib><creatorcontrib>Seo, Hee-Jong</creatorcontrib><creatorcontrib>Brooks, David</creatorcontrib><creatorcontrib>Gaztañaga, Enrique</creatorcontrib><creatorcontrib>Kehoe, Robert</creatorcontrib><creatorcontrib>Levi, Michael E</creatorcontrib><creatorcontrib>Newman, Jeffrey A</creatorcontrib><creatorcontrib>Tarlé, Gregory</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><title>Angular clustering properties of the DESI QSO target selection using DR9 Legacy Imaging Surveys</title><title>Mon.Not.Roy.Astron.Soc</title><description>ABSTRACT The quasar target selection for the upcoming survey of the Dark Energy Spectroscopic Instrument (DESI) will be fixed for the next 5 yr. The aim of this work is to validate the quasar selection by studying the impact of imaging systematics as well as stellar and galactic contaminants, and to develop a procedure to mitigate them. Density fluctuations of quasar targets are found to be related to photometric properties such as seeing and depth of the Data Release 9 of the DESI Legacy Imaging Surveys. To model this complex relation, we explore machine learning algorithms (random forest and multilayer perceptron) as an alternative to the standard linear regression. Splitting the footprint of the Legacy Imaging Surveys into three regions according to photometric properties, we perform an independent analysis in each region, validating our method using extended Baryon Oscillation Spectroscopic Survey (eBOSS) EZ-mocks. The mitigation procedure is tested by comparing the angular correlation of the corrected target selection on each photometric region to the angular correlation function obtained using quasars from the Sloan Digital Sky Survey (SDSS) Data Release 16. With our procedure, we recover a similar level of correlation between DESI quasar targets and SDSS quasars in two-thirds of the total footprint and we show that the excess of correlation in the remaining area is due to a stellar contamination that should be removed with DESI spectroscopic data. We derive the Limber parameters in our three imaging regions and compare them to previous measurements from SDSS and the 2dF QSO Redshift Survey.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>cosmology</subject><subject>dark energy</subject><subject>data analysis</subject><subject>Data Analysis, Statistics and Probability</subject><subject>Instrumentation and Detectors</subject><subject>large scale structure of Universe</subject><subject>observations</subject><subject>Physics</subject><subject>surveys</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqVw5Wxx45DWj8RJjlVbaKVIFRTOluNs0qA0jmynUv89DeVx5LTS7Dezq0HonpIJJSmf7lur3NR5lXMWsQs0olxEAUuFuEQjQngUJDGl1-jGuQ9CSMiZGCE5a6u-URbrpncebN1WuLOmA-trcNiU2O8AL5bbNX7ZbrBXtgKPHTSgfW1a3LvBsXhNcQaV0ke83qtqkLa9PcDR3aKrUjUO7r7nGL0_Ld_mqyDbPK_nsyzQnIc-SCkTIskjFSW5EoLFIVHAo0KVhaYFT-OSpHkSh1RomuRxCUUSAmFhLviwAD5GD-dc43wtna496J02bXv6U9KEh4zSE_R4hnaqkZ2t98oepVG1XM0yOWiE89NpSg8DOzmz2hrnLJS_Bkrk0Lf86lv-9P0XbvruP_YTA3aCgA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Chaussidon, Edmond</creator><creator>Yèche, Christophe</creator><creator>Palanque-Delabrouille, Nathalie</creator><creator>de Mattia, Arnaud</creator><creator>Myers, Adam D</creator><creator>Rezaie, Mehdi</creator><creator>Ross, Ashley J</creator><creator>Seo, Hee-Jong</creator><creator>Brooks, David</creator><creator>Gaztañaga, Enrique</creator><creator>Kehoe, Robert</creator><creator>Levi, Michael E</creator><creator>Newman, Jeffrey A</creator><creator>Tarlé, Gregory</creator><creator>Zhang, Kai</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8996-4874</orcidid><orcidid>https://orcid.org/0000-0002-6588-3508</orcidid><orcidid>https://orcid.org/0000-0001-5589-7116</orcidid><orcidid>https://orcid.org/0000-0002-0068-8197</orcidid><orcidid>https://orcid.org/0000-0002-6758-2186</orcidid><orcidid>https://orcid.org/0000000189964874</orcidid><orcidid>https://orcid.org/0000000155897116</orcidid><orcidid>https://orcid.org/0000000265883508</orcidid></search><sort><creationdate>20220101</creationdate><title>Angular clustering properties of the DESI QSO target selection using DR9 Legacy Imaging Surveys</title><author>Chaussidon, Edmond ; Yèche, Christophe ; Palanque-Delabrouille, Nathalie ; de Mattia, Arnaud ; Myers, Adam D ; Rezaie, Mehdi ; Ross, Ashley J ; Seo, Hee-Jong ; Brooks, David ; Gaztañaga, Enrique ; Kehoe, Robert ; Levi, Michael E ; Newman, Jeffrey A ; Tarlé, Gregory ; Zhang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-912668b5a58ba662740ae35dafdc1d397f09b87416c18b7fed84e024b6309b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>cosmology</topic><topic>dark energy</topic><topic>data analysis</topic><topic>Data Analysis, Statistics and Probability</topic><topic>Instrumentation and Detectors</topic><topic>large scale structure of Universe</topic><topic>observations</topic><topic>Physics</topic><topic>surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaussidon, Edmond</creatorcontrib><creatorcontrib>Yèche, Christophe</creatorcontrib><creatorcontrib>Palanque-Delabrouille, Nathalie</creatorcontrib><creatorcontrib>de Mattia, Arnaud</creatorcontrib><creatorcontrib>Myers, Adam D</creatorcontrib><creatorcontrib>Rezaie, Mehdi</creatorcontrib><creatorcontrib>Ross, Ashley J</creatorcontrib><creatorcontrib>Seo, Hee-Jong</creatorcontrib><creatorcontrib>Brooks, David</creatorcontrib><creatorcontrib>Gaztañaga, Enrique</creatorcontrib><creatorcontrib>Kehoe, Robert</creatorcontrib><creatorcontrib>Levi, Michael E</creatorcontrib><creatorcontrib>Newman, Jeffrey A</creatorcontrib><creatorcontrib>Tarlé, Gregory</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Wyoming, Laramie, WY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Mon.Not.Roy.Astron.Soc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaussidon, Edmond</au><au>Yèche, Christophe</au><au>Palanque-Delabrouille, Nathalie</au><au>de Mattia, Arnaud</au><au>Myers, Adam D</au><au>Rezaie, Mehdi</au><au>Ross, Ashley J</au><au>Seo, Hee-Jong</au><au>Brooks, David</au><au>Gaztañaga, Enrique</au><au>Kehoe, Robert</au><au>Levi, Michael E</au><au>Newman, Jeffrey A</au><au>Tarlé, Gregory</au><au>Zhang, Kai</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Univ. of Wyoming, Laramie, WY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular clustering properties of the DESI QSO target selection using DR9 Legacy Imaging Surveys</atitle><jtitle>Mon.Not.Roy.Astron.Soc</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>509</volume><issue>3</issue><spage>3904</spage><epage>3923</epage><pages>3904-3923</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The quasar target selection for the upcoming survey of the Dark Energy Spectroscopic Instrument (DESI) will be fixed for the next 5 yr. The aim of this work is to validate the quasar selection by studying the impact of imaging systematics as well as stellar and galactic contaminants, and to develop a procedure to mitigate them. Density fluctuations of quasar targets are found to be related to photometric properties such as seeing and depth of the Data Release 9 of the DESI Legacy Imaging Surveys. To model this complex relation, we explore machine learning algorithms (random forest and multilayer perceptron) as an alternative to the standard linear regression. Splitting the footprint of the Legacy Imaging Surveys into three regions according to photometric properties, we perform an independent analysis in each region, validating our method using extended Baryon Oscillation Spectroscopic Survey (eBOSS) EZ-mocks. The mitigation procedure is tested by comparing the angular correlation of the corrected target selection on each photometric region to the angular correlation function obtained using quasars from the Sloan Digital Sky Survey (SDSS) Data Release 16. With our procedure, we recover a similar level of correlation between DESI quasar targets and SDSS quasars in two-thirds of the total footprint and we show that the excess of correlation in the remaining area is due to a stellar contamination that should be removed with DESI spectroscopic data. We derive the Limber parameters in our three imaging regions and compare them to previous measurements from SDSS and the 2dF QSO Redshift Survey.</abstract><cop>United Kingdom</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stab3252</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8996-4874</orcidid><orcidid>https://orcid.org/0000-0002-6588-3508</orcidid><orcidid>https://orcid.org/0000-0001-5589-7116</orcidid><orcidid>https://orcid.org/0000-0002-0068-8197</orcidid><orcidid>https://orcid.org/0000-0002-6758-2186</orcidid><orcidid>https://orcid.org/0000000189964874</orcidid><orcidid>https://orcid.org/0000000155897116</orcidid><orcidid>https://orcid.org/0000000265883508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Mon.Not.Roy.Astron.Soc, 2022-01, Vol.509 (3), p.3904-3923
issn 0035-8711
1365-2966
language eng
recordid cdi_osti_scitechconnect_1834211
source Oxford Journals Open Access Collection
subjects ASTRONOMY AND ASTROPHYSICS
Astrophysics
cosmology
dark energy
data analysis
Data Analysis, Statistics and Probability
Instrumentation and Detectors
large scale structure of Universe
observations
Physics
surveys
title Angular clustering properties of the DESI QSO target selection using DR9 Legacy Imaging Surveys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20clustering%20properties%20of%20the%20DESI%20QSO%20target%20selection%20using%20DR9%20Legacy%20Imaging%20Surveys&rft.jtitle=Mon.Not.Roy.Astron.Soc&rft.au=Chaussidon,%20Edmond&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-01-01&rft.volume=509&rft.issue=3&rft.spage=3904&rft.epage=3923&rft.pages=3904-3923&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab3252&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab3252%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab3252&rfr_iscdi=true