High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3
The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, n...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-11, Vol.11 (42), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Hu, Lei Luo, Yubo Fang, Yue‐Wen Qin, Feiyu Cao, Xun Xie, Hongyao Liu, Jiawei Dong, Jinfeng Sanson, Andrea Giarola, Marco Tan, Xianyi Zheng, Yun Suwardi, Ady Huang, Yizhong Hippalgaonkar, Kedar He, Jiaqing Zhang, Wenqing Xu, Jianwei Yan, Qingyu Kanatzidis, Mercouri G. |
description | The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, nanoscale defects can effectively scatter acoustic phonons to suppress thermal conductivity. Here, it is reported that the triple doping of Cu2SnSe3 leads to a high ZT value of 1.6 at 823 K for Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3, and a decent average ZT (ZTave) value of 0.7 is also achieved for Cu1.85Ag0.15(Sn0.93Mg0.06Na0.01)Se3 from 475 to 823 K. This study reveals: 1) Ag doping on Cu sites generates numerous point defects and greatly decreases lattice thermal conductivity. 2) Doping Mg or Ga converts the monoclinic Cu2SnSe3 into a cubic structure. This symmetry enhancing leads to an increase in the effective mass from 0.8 me to 2.6 me (me, free electron mass) and the power factor from 4.3 µW cm−1 K−2 for Cu2SnSe3 to 11.6 µW cm−1 K−2. 3) Na doping creates dense dislocation arrays and nanoprecipitates, which strengthens the phonon scattering. 4) Pair distribution function analysis shows localized symmetry breakdown in the cubic Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3. This work provides a standpoint to design promising thermoelectric materials by synergistically manipulating crystal symmetry and nanoscale defects.
The highest ZT value of 1.6 at 823 K is achieved in the diamondoid compound Cu2SnSe3 by a triple doping strategy. Crystal symmetry enhanced from monoclinic to cubic leads to band convergence, favorable for electrical properties. The existence of nanoscale defects effectively decreases lattice thermal conductivity. The joint effect produces the highest ZT value in thermoelectric materials with diamondoid structures. |
doi_str_mv | 10.1002/aenm.202100661 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1834050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595869331</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3001-1f4fa4dc989d8961d2e6d852b9ce37a2512938a7dc06b226fcce27247357a36b3</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhE1poaHNtWfRnpPqYcvWMThpU0gfkPQsFHldK1iSI9sU__s6pGQvOwMfy85E0QPBc4IxfVbg7JxiOhrOyVU0IZzEM57F-PqiGb2Npm17wOPEgmDGJtFxbX4qtKsgWA816C4Yjb4glD5Y5TSgrgq-H5E8DG2narQdrIUuDGjlqhNgwXXIOLQLpqkHtPQNFGhplPWu8KZAubeN790oerp1W2D30U2p6ham__su-n5Z7fL1bPP5-pYvNjPPMCYzUsaligstMlFkgpOCAi-yhO6FBpYqmhAqWKbSQmO-p5SXWgNNaZyyJFWM79ld9Hi-69vOyFabDnSlvXNjSEkyFuMEj9DTGWqCP_bQdvLg--DGvyRNRJJxwRgZKXGmfk0Ng2yCsSoMkmB56l6eupeX7uVi9fF-cewP21x6NQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595869331</pqid></control><display><type>article</type><title>High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Lei ; Luo, Yubo ; Fang, Yue‐Wen ; Qin, Feiyu ; Cao, Xun ; Xie, Hongyao ; Liu, Jiawei ; Dong, Jinfeng ; Sanson, Andrea ; Giarola, Marco ; Tan, Xianyi ; Zheng, Yun ; Suwardi, Ady ; Huang, Yizhong ; Hippalgaonkar, Kedar ; He, Jiaqing ; Zhang, Wenqing ; Xu, Jianwei ; Yan, Qingyu ; Kanatzidis, Mercouri G.</creator><creatorcontrib>Hu, Lei ; Luo, Yubo ; Fang, Yue‐Wen ; Qin, Feiyu ; Cao, Xun ; Xie, Hongyao ; Liu, Jiawei ; Dong, Jinfeng ; Sanson, Andrea ; Giarola, Marco ; Tan, Xianyi ; Zheng, Yun ; Suwardi, Ady ; Huang, Yizhong ; Hippalgaonkar, Kedar ; He, Jiaqing ; Zhang, Wenqing ; Xu, Jianwei ; Yan, Qingyu ; Kanatzidis, Mercouri G. ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, nanoscale defects can effectively scatter acoustic phonons to suppress thermal conductivity. Here, it is reported that the triple doping of Cu2SnSe3 leads to a high ZT value of 1.6 at 823 K for Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3, and a decent average ZT (ZTave) value of 0.7 is also achieved for Cu1.85Ag0.15(Sn0.93Mg0.06Na0.01)Se3 from 475 to 823 K. This study reveals: 1) Ag doping on Cu sites generates numerous point defects and greatly decreases lattice thermal conductivity. 2) Doping Mg or Ga converts the monoclinic Cu2SnSe3 into a cubic structure. This symmetry enhancing leads to an increase in the effective mass from 0.8 me to 2.6 me (me, free electron mass) and the power factor from 4.3 µW cm−1 K−2 for Cu2SnSe3 to 11.6 µW cm−1 K−2. 3) Na doping creates dense dislocation arrays and nanoprecipitates, which strengthens the phonon scattering. 4) Pair distribution function analysis shows localized symmetry breakdown in the cubic Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3. This work provides a standpoint to design promising thermoelectric materials by synergistically manipulating crystal symmetry and nanoscale defects.
The highest ZT value of 1.6 at 823 K is achieved in the diamondoid compound Cu2SnSe3 by a triple doping strategy. Crystal symmetry enhanced from monoclinic to cubic leads to band convergence, favorable for electrical properties. The existence of nanoscale defects effectively decreases lattice thermal conductivity. The joint effect produces the highest ZT value in thermoelectric materials with diamondoid structures.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202100661</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Copper ; Crystal defects ; Crystal structure ; crystal symmetry ; Crystallography ; Design defects ; diamondoid structure ; Diamonds ; Dislocation density ; Distribution functions ; Doping ; Electrical resistivity ; Electron mass ; Free electrons ; Function analysis ; Heat conductivity ; Heat transfer ; MATERIALS SCIENCE ; nanoscale defect ; nanoscale defects ; Phonons ; Point defects ; Power factor ; Seebeck effect ; Silver ; Symmetry ; Thermal conductivity ; Thermoelectric materials ; thermoelectrics</subject><ispartof>Advanced energy materials, 2021-11, Vol.11 (42), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3218-3553 ; 0000-0003-3954-6003 ; 0000-0003-2644-856X ; 0000-0002-7501-6723 ; 0000-0003-0317-3225 ; 0000-0002-8688-0322 ; 0000-0002-7342-0431 ; 0000-0002-2472-3866 ; 0000-0003-0785-313X ; 0000-0003-3364-0576 ; 0000-0002-2551-6375 ; 0000-0002-1270-9047 ; 0000-0003-3674-7352 ; 0000-0002-4647-1604 ; 0000-0003-3945-5443 ; 0000-0003-2037-4168 ; 000000030785313X ; 0000000336747352 ; 0000000339546003 ; 0000000286880322 ; 0000000224723866 ; 0000000273420431 ; 0000000333640576 ; 000000032644856X ; 0000000332183553 ; 0000000225516375 ; 0000000275016723 ; 0000000212709047 ; 0000000303173225 ; 0000000320374168 ; 0000000246471604 ; 0000000339455443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202100661$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202100661$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1834050$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Lei</creatorcontrib><creatorcontrib>Luo, Yubo</creatorcontrib><creatorcontrib>Fang, Yue‐Wen</creatorcontrib><creatorcontrib>Qin, Feiyu</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Xie, Hongyao</creatorcontrib><creatorcontrib>Liu, Jiawei</creatorcontrib><creatorcontrib>Dong, Jinfeng</creatorcontrib><creatorcontrib>Sanson, Andrea</creatorcontrib><creatorcontrib>Giarola, Marco</creatorcontrib><creatorcontrib>Tan, Xianyi</creatorcontrib><creatorcontrib>Zheng, Yun</creatorcontrib><creatorcontrib>Suwardi, Ady</creatorcontrib><creatorcontrib>Huang, Yizhong</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><creatorcontrib>Xu, Jianwei</creatorcontrib><creatorcontrib>Yan, Qingyu</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3</title><title>Advanced energy materials</title><description>The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, nanoscale defects can effectively scatter acoustic phonons to suppress thermal conductivity. Here, it is reported that the triple doping of Cu2SnSe3 leads to a high ZT value of 1.6 at 823 K for Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3, and a decent average ZT (ZTave) value of 0.7 is also achieved for Cu1.85Ag0.15(Sn0.93Mg0.06Na0.01)Se3 from 475 to 823 K. This study reveals: 1) Ag doping on Cu sites generates numerous point defects and greatly decreases lattice thermal conductivity. 2) Doping Mg or Ga converts the monoclinic Cu2SnSe3 into a cubic structure. This symmetry enhancing leads to an increase in the effective mass from 0.8 me to 2.6 me (me, free electron mass) and the power factor from 4.3 µW cm−1 K−2 for Cu2SnSe3 to 11.6 µW cm−1 K−2. 3) Na doping creates dense dislocation arrays and nanoprecipitates, which strengthens the phonon scattering. 4) Pair distribution function analysis shows localized symmetry breakdown in the cubic Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3. This work provides a standpoint to design promising thermoelectric materials by synergistically manipulating crystal symmetry and nanoscale defects.
The highest ZT value of 1.6 at 823 K is achieved in the diamondoid compound Cu2SnSe3 by a triple doping strategy. Crystal symmetry enhanced from monoclinic to cubic leads to band convergence, favorable for electrical properties. The existence of nanoscale defects effectively decreases lattice thermal conductivity. The joint effect produces the highest ZT value in thermoelectric materials with diamondoid structures.</description><subject>Copper</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>crystal symmetry</subject><subject>Crystallography</subject><subject>Design defects</subject><subject>diamondoid structure</subject><subject>Diamonds</subject><subject>Dislocation density</subject><subject>Distribution functions</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electron mass</subject><subject>Free electrons</subject><subject>Function analysis</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>MATERIALS SCIENCE</subject><subject>nanoscale defect</subject><subject>nanoscale defects</subject><subject>Phonons</subject><subject>Point defects</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Silver</subject><subject>Symmetry</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhE1poaHNtWfRnpPqYcvWMThpU0gfkPQsFHldK1iSI9sU__s6pGQvOwMfy85E0QPBc4IxfVbg7JxiOhrOyVU0IZzEM57F-PqiGb2Npm17wOPEgmDGJtFxbX4qtKsgWA816C4Yjb4glD5Y5TSgrgq-H5E8DG2narQdrIUuDGjlqhNgwXXIOLQLpqkHtPQNFGhplPWu8KZAubeN790oerp1W2D30U2p6ham__su-n5Z7fL1bPP5-pYvNjPPMCYzUsaligstMlFkgpOCAi-yhO6FBpYqmhAqWKbSQmO-p5SXWgNNaZyyJFWM79ld9Hi-69vOyFabDnSlvXNjSEkyFuMEj9DTGWqCP_bQdvLg--DGvyRNRJJxwRgZKXGmfk0Ng2yCsSoMkmB56l6eupeX7uVi9fF-cewP21x6NQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hu, Lei</creator><creator>Luo, Yubo</creator><creator>Fang, Yue‐Wen</creator><creator>Qin, Feiyu</creator><creator>Cao, Xun</creator><creator>Xie, Hongyao</creator><creator>Liu, Jiawei</creator><creator>Dong, Jinfeng</creator><creator>Sanson, Andrea</creator><creator>Giarola, Marco</creator><creator>Tan, Xianyi</creator><creator>Zheng, Yun</creator><creator>Suwardi, Ady</creator><creator>Huang, Yizhong</creator><creator>Hippalgaonkar, Kedar</creator><creator>He, Jiaqing</creator><creator>Zhang, Wenqing</creator><creator>Xu, Jianwei</creator><creator>Yan, Qingyu</creator><creator>Kanatzidis, Mercouri G.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3218-3553</orcidid><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid><orcidid>https://orcid.org/0000-0003-2644-856X</orcidid><orcidid>https://orcid.org/0000-0002-7501-6723</orcidid><orcidid>https://orcid.org/0000-0003-0317-3225</orcidid><orcidid>https://orcid.org/0000-0002-8688-0322</orcidid><orcidid>https://orcid.org/0000-0002-7342-0431</orcidid><orcidid>https://orcid.org/0000-0002-2472-3866</orcidid><orcidid>https://orcid.org/0000-0003-0785-313X</orcidid><orcidid>https://orcid.org/0000-0003-3364-0576</orcidid><orcidid>https://orcid.org/0000-0002-2551-6375</orcidid><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0003-3674-7352</orcidid><orcidid>https://orcid.org/0000-0002-4647-1604</orcidid><orcidid>https://orcid.org/0000-0003-3945-5443</orcidid><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/000000030785313X</orcidid><orcidid>https://orcid.org/0000000336747352</orcidid><orcidid>https://orcid.org/0000000339546003</orcidid><orcidid>https://orcid.org/0000000286880322</orcidid><orcidid>https://orcid.org/0000000224723866</orcidid><orcidid>https://orcid.org/0000000273420431</orcidid><orcidid>https://orcid.org/0000000333640576</orcidid><orcidid>https://orcid.org/000000032644856X</orcidid><orcidid>https://orcid.org/0000000332183553</orcidid><orcidid>https://orcid.org/0000000225516375</orcidid><orcidid>https://orcid.org/0000000275016723</orcidid><orcidid>https://orcid.org/0000000212709047</orcidid><orcidid>https://orcid.org/0000000303173225</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid><orcidid>https://orcid.org/0000000246471604</orcidid><orcidid>https://orcid.org/0000000339455443</orcidid></search><sort><creationdate>20211101</creationdate><title>High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3</title><author>Hu, Lei ; Luo, Yubo ; Fang, Yue‐Wen ; Qin, Feiyu ; Cao, Xun ; Xie, Hongyao ; Liu, Jiawei ; Dong, Jinfeng ; Sanson, Andrea ; Giarola, Marco ; Tan, Xianyi ; Zheng, Yun ; Suwardi, Ady ; Huang, Yizhong ; Hippalgaonkar, Kedar ; He, Jiaqing ; Zhang, Wenqing ; Xu, Jianwei ; Yan, Qingyu ; Kanatzidis, Mercouri G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3001-1f4fa4dc989d8961d2e6d852b9ce37a2512938a7dc06b226fcce27247357a36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Copper</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>crystal symmetry</topic><topic>Crystallography</topic><topic>Design defects</topic><topic>diamondoid structure</topic><topic>Diamonds</topic><topic>Dislocation density</topic><topic>Distribution functions</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electron mass</topic><topic>Free electrons</topic><topic>Function analysis</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>MATERIALS SCIENCE</topic><topic>nanoscale defect</topic><topic>nanoscale defects</topic><topic>Phonons</topic><topic>Point defects</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Silver</topic><topic>Symmetry</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lei</creatorcontrib><creatorcontrib>Luo, Yubo</creatorcontrib><creatorcontrib>Fang, Yue‐Wen</creatorcontrib><creatorcontrib>Qin, Feiyu</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Xie, Hongyao</creatorcontrib><creatorcontrib>Liu, Jiawei</creatorcontrib><creatorcontrib>Dong, Jinfeng</creatorcontrib><creatorcontrib>Sanson, Andrea</creatorcontrib><creatorcontrib>Giarola, Marco</creatorcontrib><creatorcontrib>Tan, Xianyi</creatorcontrib><creatorcontrib>Zheng, Yun</creatorcontrib><creatorcontrib>Suwardi, Ady</creatorcontrib><creatorcontrib>Huang, Yizhong</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><creatorcontrib>Xu, Jianwei</creatorcontrib><creatorcontrib>Yan, Qingyu</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lei</au><au>Luo, Yubo</au><au>Fang, Yue‐Wen</au><au>Qin, Feiyu</au><au>Cao, Xun</au><au>Xie, Hongyao</au><au>Liu, Jiawei</au><au>Dong, Jinfeng</au><au>Sanson, Andrea</au><au>Giarola, Marco</au><au>Tan, Xianyi</au><au>Zheng, Yun</au><au>Suwardi, Ady</au><au>Huang, Yizhong</au><au>Hippalgaonkar, Kedar</au><au>He, Jiaqing</au><au>Zhang, Wenqing</au><au>Xu, Jianwei</au><au>Yan, Qingyu</au><au>Kanatzidis, Mercouri G.</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3</atitle><jtitle>Advanced energy materials</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>42</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, nanoscale defects can effectively scatter acoustic phonons to suppress thermal conductivity. Here, it is reported that the triple doping of Cu2SnSe3 leads to a high ZT value of 1.6 at 823 K for Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3, and a decent average ZT (ZTave) value of 0.7 is also achieved for Cu1.85Ag0.15(Sn0.93Mg0.06Na0.01)Se3 from 475 to 823 K. This study reveals: 1) Ag doping on Cu sites generates numerous point defects and greatly decreases lattice thermal conductivity. 2) Doping Mg or Ga converts the monoclinic Cu2SnSe3 into a cubic structure. This symmetry enhancing leads to an increase in the effective mass from 0.8 me to 2.6 me (me, free electron mass) and the power factor from 4.3 µW cm−1 K−2 for Cu2SnSe3 to 11.6 µW cm−1 K−2. 3) Na doping creates dense dislocation arrays and nanoprecipitates, which strengthens the phonon scattering. 4) Pair distribution function analysis shows localized symmetry breakdown in the cubic Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3. This work provides a standpoint to design promising thermoelectric materials by synergistically manipulating crystal symmetry and nanoscale defects.
The highest ZT value of 1.6 at 823 K is achieved in the diamondoid compound Cu2SnSe3 by a triple doping strategy. Crystal symmetry enhanced from monoclinic to cubic leads to band convergence, favorable for electrical properties. The existence of nanoscale defects effectively decreases lattice thermal conductivity. The joint effect produces the highest ZT value in thermoelectric materials with diamondoid structures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202100661</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3218-3553</orcidid><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid><orcidid>https://orcid.org/0000-0003-2644-856X</orcidid><orcidid>https://orcid.org/0000-0002-7501-6723</orcidid><orcidid>https://orcid.org/0000-0003-0317-3225</orcidid><orcidid>https://orcid.org/0000-0002-8688-0322</orcidid><orcidid>https://orcid.org/0000-0002-7342-0431</orcidid><orcidid>https://orcid.org/0000-0002-2472-3866</orcidid><orcidid>https://orcid.org/0000-0003-0785-313X</orcidid><orcidid>https://orcid.org/0000-0003-3364-0576</orcidid><orcidid>https://orcid.org/0000-0002-2551-6375</orcidid><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0003-3674-7352</orcidid><orcidid>https://orcid.org/0000-0002-4647-1604</orcidid><orcidid>https://orcid.org/0000-0003-3945-5443</orcidid><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/000000030785313X</orcidid><orcidid>https://orcid.org/0000000336747352</orcidid><orcidid>https://orcid.org/0000000339546003</orcidid><orcidid>https://orcid.org/0000000286880322</orcidid><orcidid>https://orcid.org/0000000224723866</orcidid><orcidid>https://orcid.org/0000000273420431</orcidid><orcidid>https://orcid.org/0000000333640576</orcidid><orcidid>https://orcid.org/000000032644856X</orcidid><orcidid>https://orcid.org/0000000332183553</orcidid><orcidid>https://orcid.org/0000000225516375</orcidid><orcidid>https://orcid.org/0000000275016723</orcidid><orcidid>https://orcid.org/0000000212709047</orcidid><orcidid>https://orcid.org/0000000303173225</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid><orcidid>https://orcid.org/0000000246471604</orcidid><orcidid>https://orcid.org/0000000339455443</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-11, Vol.11 (42), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1834050 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Copper Crystal defects Crystal structure crystal symmetry Crystallography Design defects diamondoid structure Diamonds Dislocation density Distribution functions Doping Electrical resistivity Electron mass Free electrons Function analysis Heat conductivity Heat transfer MATERIALS SCIENCE nanoscale defect nanoscale defects Phonons Point defects Power factor Seebeck effect Silver Symmetry Thermal conductivity Thermoelectric materials thermoelectrics |
title | High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Thermoelectric%20Performance%20through%20Crystal%20Symmetry%20Enhancement%20in%20Triply%20Doped%20Diamondoid%20Compound%20Cu2SnSe3&rft.jtitle=Advanced%20energy%20materials&rft.au=Hu,%20Lei&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2021-11-01&rft.volume=11&rft.issue=42&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202100661&rft_dat=%3Cproquest_osti_%3E2595869331%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595869331&rft_id=info:pmid/&rfr_iscdi=true |