High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3

The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-11, Vol.11 (42), p.n/a
Hauptverfasser: Hu, Lei, Luo, Yubo, Fang, Yue‐Wen, Qin, Feiyu, Cao, Xun, Xie, Hongyao, Liu, Jiawei, Dong, Jinfeng, Sanson, Andrea, Giarola, Marco, Tan, Xianyi, Zheng, Yun, Suwardi, Ady, Huang, Yizhong, Hippalgaonkar, Kedar, He, Jiaqing, Zhang, Wenqing, Xu, Jianwei, Yan, Qingyu, Kanatzidis, Mercouri G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page
container_title Advanced energy materials
container_volume 11
creator Hu, Lei
Luo, Yubo
Fang, Yue‐Wen
Qin, Feiyu
Cao, Xun
Xie, Hongyao
Liu, Jiawei
Dong, Jinfeng
Sanson, Andrea
Giarola, Marco
Tan, Xianyi
Zheng, Yun
Suwardi, Ady
Huang, Yizhong
Hippalgaonkar, Kedar
He, Jiaqing
Zhang, Wenqing
Xu, Jianwei
Yan, Qingyu
Kanatzidis, Mercouri G.
description The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, nanoscale defects can effectively scatter acoustic phonons to suppress thermal conductivity. Here, it is reported that the triple doping of Cu2SnSe3 leads to a high ZT value of 1.6 at 823 K for Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3, and a decent average ZT (ZTave) value of 0.7 is also achieved for Cu1.85Ag0.15(Sn0.93Mg0.06Na0.01)Se3 from 475 to 823 K. This study reveals: 1) Ag doping on Cu sites generates numerous point defects and greatly decreases lattice thermal conductivity. 2) Doping Mg or Ga converts the monoclinic Cu2SnSe3 into a cubic structure. This symmetry enhancing leads to an increase in the effective mass from 0.8 me to 2.6 me (me, free electron mass) and the power factor from 4.3 µW cm−1 K−2 for Cu2SnSe3 to 11.6 µW cm−1 K−2. 3) Na doping creates dense dislocation arrays and nanoprecipitates, which strengthens the phonon scattering. 4) Pair distribution function analysis shows localized symmetry breakdown in the cubic Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3. This work provides a standpoint to design promising thermoelectric materials by synergistically manipulating crystal symmetry and nanoscale defects. The highest ZT value of 1.6 at 823 K is achieved in the diamondoid compound Cu2SnSe3 by a triple doping strategy. Crystal symmetry enhanced from monoclinic to cubic leads to band convergence, favorable for electrical properties. The existence of nanoscale defects effectively decreases lattice thermal conductivity. The joint effect produces the highest ZT value in thermoelectric materials with diamondoid structures.
doi_str_mv 10.1002/aenm.202100661
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1834050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595869331</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3001-1f4fa4dc989d8961d2e6d852b9ce37a2512938a7dc06b226fcce27247357a36b3</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhE1poaHNtWfRnpPqYcvWMThpU0gfkPQsFHldK1iSI9sU__s6pGQvOwMfy85E0QPBc4IxfVbg7JxiOhrOyVU0IZzEM57F-PqiGb2Npm17wOPEgmDGJtFxbX4qtKsgWA816C4Yjb4glD5Y5TSgrgq-H5E8DG2narQdrIUuDGjlqhNgwXXIOLQLpqkHtPQNFGhplPWu8KZAubeN790oerp1W2D30U2p6ham__su-n5Z7fL1bPP5-pYvNjPPMCYzUsaligstMlFkgpOCAi-yhO6FBpYqmhAqWKbSQmO-p5SXWgNNaZyyJFWM79ld9Hi-69vOyFabDnSlvXNjSEkyFuMEj9DTGWqCP_bQdvLg--DGvyRNRJJxwRgZKXGmfk0Ng2yCsSoMkmB56l6eupeX7uVi9fF-cewP21x6NQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595869331</pqid></control><display><type>article</type><title>High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Lei ; Luo, Yubo ; Fang, Yue‐Wen ; Qin, Feiyu ; Cao, Xun ; Xie, Hongyao ; Liu, Jiawei ; Dong, Jinfeng ; Sanson, Andrea ; Giarola, Marco ; Tan, Xianyi ; Zheng, Yun ; Suwardi, Ady ; Huang, Yizhong ; Hippalgaonkar, Kedar ; He, Jiaqing ; Zhang, Wenqing ; Xu, Jianwei ; Yan, Qingyu ; Kanatzidis, Mercouri G.</creator><creatorcontrib>Hu, Lei ; Luo, Yubo ; Fang, Yue‐Wen ; Qin, Feiyu ; Cao, Xun ; Xie, Hongyao ; Liu, Jiawei ; Dong, Jinfeng ; Sanson, Andrea ; Giarola, Marco ; Tan, Xianyi ; Zheng, Yun ; Suwardi, Ady ; Huang, Yizhong ; Hippalgaonkar, Kedar ; He, Jiaqing ; Zhang, Wenqing ; Xu, Jianwei ; Yan, Qingyu ; Kanatzidis, Mercouri G. ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, nanoscale defects can effectively scatter acoustic phonons to suppress thermal conductivity. Here, it is reported that the triple doping of Cu2SnSe3 leads to a high ZT value of 1.6 at 823 K for Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3, and a decent average ZT (ZTave) value of 0.7 is also achieved for Cu1.85Ag0.15(Sn0.93Mg0.06Na0.01)Se3 from 475 to 823 K. This study reveals: 1) Ag doping on Cu sites generates numerous point defects and greatly decreases lattice thermal conductivity. 2) Doping Mg or Ga converts the monoclinic Cu2SnSe3 into a cubic structure. This symmetry enhancing leads to an increase in the effective mass from 0.8 me to 2.6 me (me, free electron mass) and the power factor from 4.3 µW cm−1 K−2 for Cu2SnSe3 to 11.6 µW cm−1 K−2. 3) Na doping creates dense dislocation arrays and nanoprecipitates, which strengthens the phonon scattering. 4) Pair distribution function analysis shows localized symmetry breakdown in the cubic Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3. This work provides a standpoint to design promising thermoelectric materials by synergistically manipulating crystal symmetry and nanoscale defects. The highest ZT value of 1.6 at 823 K is achieved in the diamondoid compound Cu2SnSe3 by a triple doping strategy. Crystal symmetry enhanced from monoclinic to cubic leads to band convergence, favorable for electrical properties. The existence of nanoscale defects effectively decreases lattice thermal conductivity. The joint effect produces the highest ZT value in thermoelectric materials with diamondoid structures.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202100661</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Copper ; Crystal defects ; Crystal structure ; crystal symmetry ; Crystallography ; Design defects ; diamondoid structure ; Diamonds ; Dislocation density ; Distribution functions ; Doping ; Electrical resistivity ; Electron mass ; Free electrons ; Function analysis ; Heat conductivity ; Heat transfer ; MATERIALS SCIENCE ; nanoscale defect ; nanoscale defects ; Phonons ; Point defects ; Power factor ; Seebeck effect ; Silver ; Symmetry ; Thermal conductivity ; Thermoelectric materials ; thermoelectrics</subject><ispartof>Advanced energy materials, 2021-11, Vol.11 (42), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3218-3553 ; 0000-0003-3954-6003 ; 0000-0003-2644-856X ; 0000-0002-7501-6723 ; 0000-0003-0317-3225 ; 0000-0002-8688-0322 ; 0000-0002-7342-0431 ; 0000-0002-2472-3866 ; 0000-0003-0785-313X ; 0000-0003-3364-0576 ; 0000-0002-2551-6375 ; 0000-0002-1270-9047 ; 0000-0003-3674-7352 ; 0000-0002-4647-1604 ; 0000-0003-3945-5443 ; 0000-0003-2037-4168 ; 000000030785313X ; 0000000336747352 ; 0000000339546003 ; 0000000286880322 ; 0000000224723866 ; 0000000273420431 ; 0000000333640576 ; 000000032644856X ; 0000000332183553 ; 0000000225516375 ; 0000000275016723 ; 0000000212709047 ; 0000000303173225 ; 0000000320374168 ; 0000000246471604 ; 0000000339455443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202100661$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202100661$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1834050$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Lei</creatorcontrib><creatorcontrib>Luo, Yubo</creatorcontrib><creatorcontrib>Fang, Yue‐Wen</creatorcontrib><creatorcontrib>Qin, Feiyu</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Xie, Hongyao</creatorcontrib><creatorcontrib>Liu, Jiawei</creatorcontrib><creatorcontrib>Dong, Jinfeng</creatorcontrib><creatorcontrib>Sanson, Andrea</creatorcontrib><creatorcontrib>Giarola, Marco</creatorcontrib><creatorcontrib>Tan, Xianyi</creatorcontrib><creatorcontrib>Zheng, Yun</creatorcontrib><creatorcontrib>Suwardi, Ady</creatorcontrib><creatorcontrib>Huang, Yizhong</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><creatorcontrib>Xu, Jianwei</creatorcontrib><creatorcontrib>Yan, Qingyu</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3</title><title>Advanced energy materials</title><description>The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, nanoscale defects can effectively scatter acoustic phonons to suppress thermal conductivity. Here, it is reported that the triple doping of Cu2SnSe3 leads to a high ZT value of 1.6 at 823 K for Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3, and a decent average ZT (ZTave) value of 0.7 is also achieved for Cu1.85Ag0.15(Sn0.93Mg0.06Na0.01)Se3 from 475 to 823 K. This study reveals: 1) Ag doping on Cu sites generates numerous point defects and greatly decreases lattice thermal conductivity. 2) Doping Mg or Ga converts the monoclinic Cu2SnSe3 into a cubic structure. This symmetry enhancing leads to an increase in the effective mass from 0.8 me to 2.6 me (me, free electron mass) and the power factor from 4.3 µW cm−1 K−2 for Cu2SnSe3 to 11.6 µW cm−1 K−2. 3) Na doping creates dense dislocation arrays and nanoprecipitates, which strengthens the phonon scattering. 4) Pair distribution function analysis shows localized symmetry breakdown in the cubic Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3. This work provides a standpoint to design promising thermoelectric materials by synergistically manipulating crystal symmetry and nanoscale defects. The highest ZT value of 1.6 at 823 K is achieved in the diamondoid compound Cu2SnSe3 by a triple doping strategy. Crystal symmetry enhanced from monoclinic to cubic leads to band convergence, favorable for electrical properties. The existence of nanoscale defects effectively decreases lattice thermal conductivity. The joint effect produces the highest ZT value in thermoelectric materials with diamondoid structures.</description><subject>Copper</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>crystal symmetry</subject><subject>Crystallography</subject><subject>Design defects</subject><subject>diamondoid structure</subject><subject>Diamonds</subject><subject>Dislocation density</subject><subject>Distribution functions</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electron mass</subject><subject>Free electrons</subject><subject>Function analysis</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>MATERIALS SCIENCE</subject><subject>nanoscale defect</subject><subject>nanoscale defects</subject><subject>Phonons</subject><subject>Point defects</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Silver</subject><subject>Symmetry</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhE1poaHNtWfRnpPqYcvWMThpU0gfkPQsFHldK1iSI9sU__s6pGQvOwMfy85E0QPBc4IxfVbg7JxiOhrOyVU0IZzEM57F-PqiGb2Npm17wOPEgmDGJtFxbX4qtKsgWA816C4Yjb4glD5Y5TSgrgq-H5E8DG2narQdrIUuDGjlqhNgwXXIOLQLpqkHtPQNFGhplPWu8KZAubeN790oerp1W2D30U2p6ham__su-n5Z7fL1bPP5-pYvNjPPMCYzUsaligstMlFkgpOCAi-yhO6FBpYqmhAqWKbSQmO-p5SXWgNNaZyyJFWM79ld9Hi-69vOyFabDnSlvXNjSEkyFuMEj9DTGWqCP_bQdvLg--DGvyRNRJJxwRgZKXGmfk0Ng2yCsSoMkmB56l6eupeX7uVi9fF-cewP21x6NQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hu, Lei</creator><creator>Luo, Yubo</creator><creator>Fang, Yue‐Wen</creator><creator>Qin, Feiyu</creator><creator>Cao, Xun</creator><creator>Xie, Hongyao</creator><creator>Liu, Jiawei</creator><creator>Dong, Jinfeng</creator><creator>Sanson, Andrea</creator><creator>Giarola, Marco</creator><creator>Tan, Xianyi</creator><creator>Zheng, Yun</creator><creator>Suwardi, Ady</creator><creator>Huang, Yizhong</creator><creator>Hippalgaonkar, Kedar</creator><creator>He, Jiaqing</creator><creator>Zhang, Wenqing</creator><creator>Xu, Jianwei</creator><creator>Yan, Qingyu</creator><creator>Kanatzidis, Mercouri G.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3218-3553</orcidid><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid><orcidid>https://orcid.org/0000-0003-2644-856X</orcidid><orcidid>https://orcid.org/0000-0002-7501-6723</orcidid><orcidid>https://orcid.org/0000-0003-0317-3225</orcidid><orcidid>https://orcid.org/0000-0002-8688-0322</orcidid><orcidid>https://orcid.org/0000-0002-7342-0431</orcidid><orcidid>https://orcid.org/0000-0002-2472-3866</orcidid><orcidid>https://orcid.org/0000-0003-0785-313X</orcidid><orcidid>https://orcid.org/0000-0003-3364-0576</orcidid><orcidid>https://orcid.org/0000-0002-2551-6375</orcidid><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0003-3674-7352</orcidid><orcidid>https://orcid.org/0000-0002-4647-1604</orcidid><orcidid>https://orcid.org/0000-0003-3945-5443</orcidid><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/000000030785313X</orcidid><orcidid>https://orcid.org/0000000336747352</orcidid><orcidid>https://orcid.org/0000000339546003</orcidid><orcidid>https://orcid.org/0000000286880322</orcidid><orcidid>https://orcid.org/0000000224723866</orcidid><orcidid>https://orcid.org/0000000273420431</orcidid><orcidid>https://orcid.org/0000000333640576</orcidid><orcidid>https://orcid.org/000000032644856X</orcidid><orcidid>https://orcid.org/0000000332183553</orcidid><orcidid>https://orcid.org/0000000225516375</orcidid><orcidid>https://orcid.org/0000000275016723</orcidid><orcidid>https://orcid.org/0000000212709047</orcidid><orcidid>https://orcid.org/0000000303173225</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid><orcidid>https://orcid.org/0000000246471604</orcidid><orcidid>https://orcid.org/0000000339455443</orcidid></search><sort><creationdate>20211101</creationdate><title>High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3</title><author>Hu, Lei ; Luo, Yubo ; Fang, Yue‐Wen ; Qin, Feiyu ; Cao, Xun ; Xie, Hongyao ; Liu, Jiawei ; Dong, Jinfeng ; Sanson, Andrea ; Giarola, Marco ; Tan, Xianyi ; Zheng, Yun ; Suwardi, Ady ; Huang, Yizhong ; Hippalgaonkar, Kedar ; He, Jiaqing ; Zhang, Wenqing ; Xu, Jianwei ; Yan, Qingyu ; Kanatzidis, Mercouri G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3001-1f4fa4dc989d8961d2e6d852b9ce37a2512938a7dc06b226fcce27247357a36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Copper</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>crystal symmetry</topic><topic>Crystallography</topic><topic>Design defects</topic><topic>diamondoid structure</topic><topic>Diamonds</topic><topic>Dislocation density</topic><topic>Distribution functions</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electron mass</topic><topic>Free electrons</topic><topic>Function analysis</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>MATERIALS SCIENCE</topic><topic>nanoscale defect</topic><topic>nanoscale defects</topic><topic>Phonons</topic><topic>Point defects</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Silver</topic><topic>Symmetry</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lei</creatorcontrib><creatorcontrib>Luo, Yubo</creatorcontrib><creatorcontrib>Fang, Yue‐Wen</creatorcontrib><creatorcontrib>Qin, Feiyu</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Xie, Hongyao</creatorcontrib><creatorcontrib>Liu, Jiawei</creatorcontrib><creatorcontrib>Dong, Jinfeng</creatorcontrib><creatorcontrib>Sanson, Andrea</creatorcontrib><creatorcontrib>Giarola, Marco</creatorcontrib><creatorcontrib>Tan, Xianyi</creatorcontrib><creatorcontrib>Zheng, Yun</creatorcontrib><creatorcontrib>Suwardi, Ady</creatorcontrib><creatorcontrib>Huang, Yizhong</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><creatorcontrib>Xu, Jianwei</creatorcontrib><creatorcontrib>Yan, Qingyu</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lei</au><au>Luo, Yubo</au><au>Fang, Yue‐Wen</au><au>Qin, Feiyu</au><au>Cao, Xun</au><au>Xie, Hongyao</au><au>Liu, Jiawei</au><au>Dong, Jinfeng</au><au>Sanson, Andrea</au><au>Giarola, Marco</au><au>Tan, Xianyi</au><au>Zheng, Yun</au><au>Suwardi, Ady</au><au>Huang, Yizhong</au><au>Hippalgaonkar, Kedar</au><au>He, Jiaqing</au><au>Zhang, Wenqing</au><au>Xu, Jianwei</au><au>Yan, Qingyu</au><au>Kanatzidis, Mercouri G.</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3</atitle><jtitle>Advanced energy materials</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>42</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The presence of high crystallographic symmetry and nanoscale defects are favorable for thermoelectrics. With proper electronic structures, a highly symmetric crystal tends to possess multiple carrier channels and promote electrical conductivity without sacrificing Seebeck coefficient. In addition, nanoscale defects can effectively scatter acoustic phonons to suppress thermal conductivity. Here, it is reported that the triple doping of Cu2SnSe3 leads to a high ZT value of 1.6 at 823 K for Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3, and a decent average ZT (ZTave) value of 0.7 is also achieved for Cu1.85Ag0.15(Sn0.93Mg0.06Na0.01)Se3 from 475 to 823 K. This study reveals: 1) Ag doping on Cu sites generates numerous point defects and greatly decreases lattice thermal conductivity. 2) Doping Mg or Ga converts the monoclinic Cu2SnSe3 into a cubic structure. This symmetry enhancing leads to an increase in the effective mass from 0.8 me to 2.6 me (me, free electron mass) and the power factor from 4.3 µW cm−1 K−2 for Cu2SnSe3 to 11.6 µW cm−1 K−2. 3) Na doping creates dense dislocation arrays and nanoprecipitates, which strengthens the phonon scattering. 4) Pair distribution function analysis shows localized symmetry breakdown in the cubic Cu1.85Ag0.15(Sn0.88Ga0.1Na0.02)Se3. This work provides a standpoint to design promising thermoelectric materials by synergistically manipulating crystal symmetry and nanoscale defects. The highest ZT value of 1.6 at 823 K is achieved in the diamondoid compound Cu2SnSe3 by a triple doping strategy. Crystal symmetry enhanced from monoclinic to cubic leads to band convergence, favorable for electrical properties. The existence of nanoscale defects effectively decreases lattice thermal conductivity. The joint effect produces the highest ZT value in thermoelectric materials with diamondoid structures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202100661</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3218-3553</orcidid><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid><orcidid>https://orcid.org/0000-0003-2644-856X</orcidid><orcidid>https://orcid.org/0000-0002-7501-6723</orcidid><orcidid>https://orcid.org/0000-0003-0317-3225</orcidid><orcidid>https://orcid.org/0000-0002-8688-0322</orcidid><orcidid>https://orcid.org/0000-0002-7342-0431</orcidid><orcidid>https://orcid.org/0000-0002-2472-3866</orcidid><orcidid>https://orcid.org/0000-0003-0785-313X</orcidid><orcidid>https://orcid.org/0000-0003-3364-0576</orcidid><orcidid>https://orcid.org/0000-0002-2551-6375</orcidid><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0003-3674-7352</orcidid><orcidid>https://orcid.org/0000-0002-4647-1604</orcidid><orcidid>https://orcid.org/0000-0003-3945-5443</orcidid><orcidid>https://orcid.org/0000-0003-2037-4168</orcidid><orcidid>https://orcid.org/000000030785313X</orcidid><orcidid>https://orcid.org/0000000336747352</orcidid><orcidid>https://orcid.org/0000000339546003</orcidid><orcidid>https://orcid.org/0000000286880322</orcidid><orcidid>https://orcid.org/0000000224723866</orcidid><orcidid>https://orcid.org/0000000273420431</orcidid><orcidid>https://orcid.org/0000000333640576</orcidid><orcidid>https://orcid.org/000000032644856X</orcidid><orcidid>https://orcid.org/0000000332183553</orcidid><orcidid>https://orcid.org/0000000225516375</orcidid><orcidid>https://orcid.org/0000000275016723</orcidid><orcidid>https://orcid.org/0000000212709047</orcidid><orcidid>https://orcid.org/0000000303173225</orcidid><orcidid>https://orcid.org/0000000320374168</orcidid><orcidid>https://orcid.org/0000000246471604</orcidid><orcidid>https://orcid.org/0000000339455443</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-11, Vol.11 (42), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1834050
source Wiley Online Library Journals Frontfile Complete
subjects Copper
Crystal defects
Crystal structure
crystal symmetry
Crystallography
Design defects
diamondoid structure
Diamonds
Dislocation density
Distribution functions
Doping
Electrical resistivity
Electron mass
Free electrons
Function analysis
Heat conductivity
Heat transfer
MATERIALS SCIENCE
nanoscale defect
nanoscale defects
Phonons
Point defects
Power factor
Seebeck effect
Silver
Symmetry
Thermal conductivity
Thermoelectric materials
thermoelectrics
title High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Thermoelectric%20Performance%20through%20Crystal%20Symmetry%20Enhancement%20in%20Triply%20Doped%20Diamondoid%20Compound%20Cu2SnSe3&rft.jtitle=Advanced%20energy%20materials&rft.au=Hu,%20Lei&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2021-11-01&rft.volume=11&rft.issue=42&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202100661&rft_dat=%3Cproquest_osti_%3E2595869331%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595869331&rft_id=info:pmid/&rfr_iscdi=true