Photoelectrochemical alcohol oxidation by mixed-linker metal–organic frameworks

Metal–organic frameworks (MOFs) provide a suitable platform for stable and efficient heterogeneous photoelectrochemical oxidation catalysis due to their highly ordered structure, large surface area, and synthetic tunability. Herein, a mixed-linker MOF comprising of a photosensitizer [Ru(dcbpy)(bpy)2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2020-03, Vol.225
Hauptverfasser: Lin, Shaoyang, Cairnie, Daniel R., Davis, Dylan, Chakraborty, Arnab, Cai, Meng, Morris, Amanda J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Faraday discussions
container_volume 225
creator Lin, Shaoyang
Cairnie, Daniel R.
Davis, Dylan
Chakraborty, Arnab
Cai, Meng
Morris, Amanda J.
description Metal–organic frameworks (MOFs) provide a suitable platform for stable and efficient heterogeneous photoelectrochemical oxidation catalysis due to their highly ordered structure, large surface area, and synthetic tunability. Herein, a mixed-linker MOF comprising of a photosensitizer [Ru(dcbpy)(bpy)2]2+ (bpy = 2,2'-bipyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine) and catalyst [Ru(tpy)(dcbpy)Cl]+ (tpy = 2,2':6',2''-terpyridine) that were incorporated into the UiO-67 framework and grown as thin films on a TiO2-coated, fluorine-doped tin oxide (FTO) electrode (RuB-RuTB-UiO-67/TiO2/FTO). When used as an electrode for the photoelectrochemical oxidation of benzyl alcohol, the mixed-linker MOF film showed a faradaic efficiency of 34%, corresponding to a 3-fold increase in efficiency relative to the RuB-UiO-67/TiO2/FTO control. Furthermore, this increase in catalytic efficiency is ascribed to the activation of RuTB moieties via oxidation by photogenerated RuIIIB. Transient absorption spectroscopy revealed the delayed appearance of RuIIITB* or RuIIITB formation, occurring with a lifetime of 21 ns, due to energy and/or electron transfer. The recovery kinetics of the charge separated state was increased (283 μs) in comparison to single-component control experiments (105 μs for RuB-UiO-67/TiO2/FTO and 7 μs for RuTB-UiO-67/TiO2/FTO) indicating a cooperative effect that could be exploited in chromophore/catalyst MOF motifs.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1833041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1833041</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18330413</originalsourceid><addsrcrecordid>eNqNjUsKwjAURYMoWD97CM4DKWlLOxbFoYLzEtNXG5vkQRKwztyDO3QlVnABju6Bc-BOSJKKImN5VpXTL-cVK4qMz8kihBvnvBhtQk7HDiOCARU9qg6sVtJQaRR2aCgOupFRo6OXB7V6gIYZ7Xrw1EKU5v18ob9KpxVtvbRwR9-HFZm10gRY_3ZJNvvdeXtgGKKug9IRVKfQufGyTksheJaKv6IPV7xCzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photoelectrochemical alcohol oxidation by mixed-linker metal–organic frameworks</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lin, Shaoyang ; Cairnie, Daniel R. ; Davis, Dylan ; Chakraborty, Arnab ; Cai, Meng ; Morris, Amanda J.</creator><creatorcontrib>Lin, Shaoyang ; Cairnie, Daniel R. ; Davis, Dylan ; Chakraborty, Arnab ; Cai, Meng ; Morris, Amanda J. ; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>Metal–organic frameworks (MOFs) provide a suitable platform for stable and efficient heterogeneous photoelectrochemical oxidation catalysis due to their highly ordered structure, large surface area, and synthetic tunability. Herein, a mixed-linker MOF comprising of a photosensitizer [Ru(dcbpy)(bpy)2]2+ (bpy = 2,2'-bipyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine) and catalyst [Ru(tpy)(dcbpy)Cl]+ (tpy = 2,2':6',2''-terpyridine) that were incorporated into the UiO-67 framework and grown as thin films on a TiO2-coated, fluorine-doped tin oxide (FTO) electrode (RuB-RuTB-UiO-67/TiO2/FTO). When used as an electrode for the photoelectrochemical oxidation of benzyl alcohol, the mixed-linker MOF film showed a faradaic efficiency of 34%, corresponding to a 3-fold increase in efficiency relative to the RuB-UiO-67/TiO2/FTO control. Furthermore, this increase in catalytic efficiency is ascribed to the activation of RuTB moieties via oxidation by photogenerated RuIIIB. Transient absorption spectroscopy revealed the delayed appearance of RuIIITB* or RuIIITB formation, occurring with a lifetime of 21 ns, due to energy and/or electron transfer. The recovery kinetics of the charge separated state was increased (283 μs) in comparison to single-component control experiments (105 μs for RuB-UiO-67/TiO2/FTO and 7 μs for RuTB-UiO-67/TiO2/FTO) indicating a cooperative effect that could be exploited in chromophore/catalyst MOF motifs.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Faraday discussions, 2020-03, Vol.225</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000271224736 ; 0000000341087299 ; 0000000235120366 ; 0000000199305151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1833041$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Shaoyang</creatorcontrib><creatorcontrib>Cairnie, Daniel R.</creatorcontrib><creatorcontrib>Davis, Dylan</creatorcontrib><creatorcontrib>Chakraborty, Arnab</creatorcontrib><creatorcontrib>Cai, Meng</creatorcontrib><creatorcontrib>Morris, Amanda J.</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Photoelectrochemical alcohol oxidation by mixed-linker metal–organic frameworks</title><title>Faraday discussions</title><description>Metal–organic frameworks (MOFs) provide a suitable platform for stable and efficient heterogeneous photoelectrochemical oxidation catalysis due to their highly ordered structure, large surface area, and synthetic tunability. Herein, a mixed-linker MOF comprising of a photosensitizer [Ru(dcbpy)(bpy)2]2+ (bpy = 2,2'-bipyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine) and catalyst [Ru(tpy)(dcbpy)Cl]+ (tpy = 2,2':6',2''-terpyridine) that were incorporated into the UiO-67 framework and grown as thin films on a TiO2-coated, fluorine-doped tin oxide (FTO) electrode (RuB-RuTB-UiO-67/TiO2/FTO). When used as an electrode for the photoelectrochemical oxidation of benzyl alcohol, the mixed-linker MOF film showed a faradaic efficiency of 34%, corresponding to a 3-fold increase in efficiency relative to the RuB-UiO-67/TiO2/FTO control. Furthermore, this increase in catalytic efficiency is ascribed to the activation of RuTB moieties via oxidation by photogenerated RuIIIB. Transient absorption spectroscopy revealed the delayed appearance of RuIIITB* or RuIIITB formation, occurring with a lifetime of 21 ns, due to energy and/or electron transfer. The recovery kinetics of the charge separated state was increased (283 μs) in comparison to single-component control experiments (105 μs for RuB-UiO-67/TiO2/FTO and 7 μs for RuTB-UiO-67/TiO2/FTO) indicating a cooperative effect that could be exploited in chromophore/catalyst MOF motifs.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjUsKwjAURYMoWD97CM4DKWlLOxbFoYLzEtNXG5vkQRKwztyDO3QlVnABju6Bc-BOSJKKImN5VpXTL-cVK4qMz8kihBvnvBhtQk7HDiOCARU9qg6sVtJQaRR2aCgOupFRo6OXB7V6gIYZ7Xrw1EKU5v18ob9KpxVtvbRwR9-HFZm10gRY_3ZJNvvdeXtgGKKug9IRVKfQufGyTksheJaKv6IPV7xCzg</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Lin, Shaoyang</creator><creator>Cairnie, Daniel R.</creator><creator>Davis, Dylan</creator><creator>Chakraborty, Arnab</creator><creator>Cai, Meng</creator><creator>Morris, Amanda J.</creator><general>Royal Society of Chemistry</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000271224736</orcidid><orcidid>https://orcid.org/0000000341087299</orcidid><orcidid>https://orcid.org/0000000235120366</orcidid><orcidid>https://orcid.org/0000000199305151</orcidid></search><sort><creationdate>20200320</creationdate><title>Photoelectrochemical alcohol oxidation by mixed-linker metal–organic frameworks</title><author>Lin, Shaoyang ; Cairnie, Daniel R. ; Davis, Dylan ; Chakraborty, Arnab ; Cai, Meng ; Morris, Amanda J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18330413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shaoyang</creatorcontrib><creatorcontrib>Cairnie, Daniel R.</creatorcontrib><creatorcontrib>Davis, Dylan</creatorcontrib><creatorcontrib>Chakraborty, Arnab</creatorcontrib><creatorcontrib>Cai, Meng</creatorcontrib><creatorcontrib>Morris, Amanda J.</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shaoyang</au><au>Cairnie, Daniel R.</au><au>Davis, Dylan</au><au>Chakraborty, Arnab</au><au>Cai, Meng</au><au>Morris, Amanda J.</au><aucorp>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemical alcohol oxidation by mixed-linker metal–organic frameworks</atitle><jtitle>Faraday discussions</jtitle><date>2020-03-20</date><risdate>2020</risdate><volume>225</volume><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>Metal–organic frameworks (MOFs) provide a suitable platform for stable and efficient heterogeneous photoelectrochemical oxidation catalysis due to their highly ordered structure, large surface area, and synthetic tunability. Herein, a mixed-linker MOF comprising of a photosensitizer [Ru(dcbpy)(bpy)2]2+ (bpy = 2,2'-bipyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine) and catalyst [Ru(tpy)(dcbpy)Cl]+ (tpy = 2,2':6',2''-terpyridine) that were incorporated into the UiO-67 framework and grown as thin films on a TiO2-coated, fluorine-doped tin oxide (FTO) electrode (RuB-RuTB-UiO-67/TiO2/FTO). When used as an electrode for the photoelectrochemical oxidation of benzyl alcohol, the mixed-linker MOF film showed a faradaic efficiency of 34%, corresponding to a 3-fold increase in efficiency relative to the RuB-UiO-67/TiO2/FTO control. Furthermore, this increase in catalytic efficiency is ascribed to the activation of RuTB moieties via oxidation by photogenerated RuIIIB. Transient absorption spectroscopy revealed the delayed appearance of RuIIITB* or RuIIITB formation, occurring with a lifetime of 21 ns, due to energy and/or electron transfer. The recovery kinetics of the charge separated state was increased (283 μs) in comparison to single-component control experiments (105 μs for RuB-UiO-67/TiO2/FTO and 7 μs for RuTB-UiO-67/TiO2/FTO) indicating a cooperative effect that could be exploited in chromophore/catalyst MOF motifs.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><orcidid>https://orcid.org/0000000271224736</orcidid><orcidid>https://orcid.org/0000000341087299</orcidid><orcidid>https://orcid.org/0000000235120366</orcidid><orcidid>https://orcid.org/0000000199305151</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2020-03, Vol.225
issn 1359-6640
1364-5498
language eng
recordid cdi_osti_scitechconnect_1833041
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Photoelectrochemical alcohol oxidation by mixed-linker metal–organic frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemical%20alcohol%20oxidation%20by%20mixed-linker%20metal%E2%80%93organic%20frameworks&rft.jtitle=Faraday%20discussions&rft.au=Lin,%20Shaoyang&rft.aucorp=Virginia%20Polytechnic%20Inst.%20and%20State%20Univ.%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2020-03-20&rft.volume=225&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/&rft_dat=%3Costi%3E1833041%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true