Sustainable Production of Acrylic Acid via 3‑Hydroxypropionic Acid from Lignocellulosic Biomass

Lignocellulosic biomass is a promising renewable feedstock for the sustainable manufacturing of biofuels and bioproducts. Among emerging bioproducts, 3-hydroxypropionic acid (3-HP) is of particular interest as a platform chemical to produce commercially significant chemicals such as acrylic acid. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2021-12, Vol.9 (49), p.16659-16669
Hauptverfasser: Bhagwat, Sarang S, Li, Yalin, Cortés-Peña, Yoel R, Brace, Emma C, Martin, Teresa A, Zhao, Huimin, Guest, Jeremy S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16669
container_issue 49
container_start_page 16659
container_title ACS sustainable chemistry & engineering
container_volume 9
creator Bhagwat, Sarang S
Li, Yalin
Cortés-Peña, Yoel R
Brace, Emma C
Martin, Teresa A
Zhao, Huimin
Guest, Jeremy S
description Lignocellulosic biomass is a promising renewable feedstock for the sustainable manufacturing of biofuels and bioproducts. Among emerging bioproducts, 3-hydroxypropionic acid (3-HP) is of particular interest as a platform chemical to produce commercially significant chemicals such as acrylic acid. In this study, BioSTEAMan open-source platformwas leveraged to design, simulate, and evaluate (via techno-economic analysis, TEA, and life cycle assessment, LCA) biorefineries producing acrylic acid via fermentation of sugars (glucose and xylose) to 3-HP. The biorefinery could produce acrylic acid with a minimum product selling price (MPSP) of $1.72–2.08·kg–1 (5th–95th percentiles; baseline at $1.83·kg–1). Advancements in key technological parameters (fermentation yield, titer, and saccharification solids loading) could greatly enhance the biorefinery’s performance (MPSP of $1.29–1.52·kg–1 with ∼88% probability of market-competitiveness, a global warming potential of 3.00 [2.53–3.38] kg CO2-eq·kg–1, and a fossil energy consumption of 39.9 [31.6–45.1] MJ·kg–1). A quantitative sustainable design framework was used to explore alternative fermentation regimes (neutral/low-pH fermentation across titer, yield, and productivity combinations) and alternative feedstocks (first/second-generation feedstocks across price and sugar/carbohydrate content). Overall, this research highlights the ability of agile TEA–LCA to screen promising biorefinery designs, navigate sustainability trade-offs, prioritize research needs, and establish a roadmap for the continued development of bioproducts and biofuels.
doi_str_mv 10.1021/acssuschemeng.1c05441
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1832945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a445406841</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-5edb0159c58e3ee15c364c2b498f9db9045566127885cc32ebc525c0b2fefb773</originalsourceid><addsrcrecordid>eNqFkN9KwzAUxoMoOOYeQSjed-ZP0yWXc6gTBgrqdUhP0y2jbUbSir3zFXzFPYmRTdArz8134Pd9B86H0CXBU4IpudYQQh9gYxrTrqcEMM8ycoJGlOQixZngp7_2czQJYYvjSMmoICOkn_vQadvqojbJk3dlD511beKqZA5-qC1EtWXyZnXC9h-fy6H07n3YebeLth9aedckK7tuHZi67msXIrmxrtEhXKCzStfBTI46Rq93ty-LZbp6vH9YzFepZrnsUm7KAhMugQvDjCEcWJ4BLTIpKlkWEmec5zmhMyE4AKOmAE454IJWpipmMzZGV4e7LnRWBbCdgQ24tjXQKSIYlRmPJn4wgXcheFOpnbeN9oMiWH33qf70qY59xhw55CJWW9f7Nr7yT-YLfi2AEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sustainable Production of Acrylic Acid via 3‑Hydroxypropionic Acid from Lignocellulosic Biomass</title><source>ACS Publications</source><creator>Bhagwat, Sarang S ; Li, Yalin ; Cortés-Peña, Yoel R ; Brace, Emma C ; Martin, Teresa A ; Zhao, Huimin ; Guest, Jeremy S</creator><creatorcontrib>Bhagwat, Sarang S ; Li, Yalin ; Cortés-Peña, Yoel R ; Brace, Emma C ; Martin, Teresa A ; Zhao, Huimin ; Guest, Jeremy S ; Univ. of Illinois at Urbana-Champaign, IL (United States). Center for Advanced Bioenergy and Bioproducts Innovation (CABBI)</creatorcontrib><description>Lignocellulosic biomass is a promising renewable feedstock for the sustainable manufacturing of biofuels and bioproducts. Among emerging bioproducts, 3-hydroxypropionic acid (3-HP) is of particular interest as a platform chemical to produce commercially significant chemicals such as acrylic acid. In this study, BioSTEAMan open-source platformwas leveraged to design, simulate, and evaluate (via techno-economic analysis, TEA, and life cycle assessment, LCA) biorefineries producing acrylic acid via fermentation of sugars (glucose and xylose) to 3-HP. The biorefinery could produce acrylic acid with a minimum product selling price (MPSP) of $1.72–2.08·kg–1 (5th–95th percentiles; baseline at $1.83·kg–1). Advancements in key technological parameters (fermentation yield, titer, and saccharification solids loading) could greatly enhance the biorefinery’s performance (MPSP of $1.29–1.52·kg–1 with ∼88% probability of market-competitiveness, a global warming potential of 3.00 [2.53–3.38] kg CO2-eq·kg–1, and a fossil energy consumption of 39.9 [31.6–45.1] MJ·kg–1). A quantitative sustainable design framework was used to explore alternative fermentation regimes (neutral/low-pH fermentation across titer, yield, and productivity combinations) and alternative feedstocks (first/second-generation feedstocks across price and sugar/carbohydrate content). Overall, this research highlights the ability of agile TEA–LCA to screen promising biorefinery designs, navigate sustainability trade-offs, prioritize research needs, and establish a roadmap for the continued development of bioproducts and biofuels.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.1c05441</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>3-hydroxypropanoic acid ; biorefinery design ; corn stover ; financial viability ; life cycle assessment (LCA) ; techno-economic analysis (TEA) ; titer−yield opportunity space ; uncertainty</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2021-12, Vol.9 (49), p.16659-16669</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-5edb0159c58e3ee15c364c2b498f9db9045566127885cc32ebc525c0b2fefb773</citedby><cites>FETCH-LOGICAL-a369t-5edb0159c58e3ee15c364c2b498f9db9045566127885cc32ebc525c0b2fefb773</cites><orcidid>0000-0002-8863-4758 ; 0000-0001-7797-2295 ; 0000-0002-9069-6739 ; 0000-0003-2489-2579 ; 0000-0003-1742-5059 ; 0000-0002-2620-2829 ; 0000000288634758 ; 0000000317425059 ; 0000000226202829 ; 0000000177972295 ; 0000000290696739 ; 0000000324892579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.1c05441$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.1c05441$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1832945$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhagwat, Sarang S</creatorcontrib><creatorcontrib>Li, Yalin</creatorcontrib><creatorcontrib>Cortés-Peña, Yoel R</creatorcontrib><creatorcontrib>Brace, Emma C</creatorcontrib><creatorcontrib>Martin, Teresa A</creatorcontrib><creatorcontrib>Zhao, Huimin</creatorcontrib><creatorcontrib>Guest, Jeremy S</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States). Center for Advanced Bioenergy and Bioproducts Innovation (CABBI)</creatorcontrib><title>Sustainable Production of Acrylic Acid via 3‑Hydroxypropionic Acid from Lignocellulosic Biomass</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Lignocellulosic biomass is a promising renewable feedstock for the sustainable manufacturing of biofuels and bioproducts. Among emerging bioproducts, 3-hydroxypropionic acid (3-HP) is of particular interest as a platform chemical to produce commercially significant chemicals such as acrylic acid. In this study, BioSTEAMan open-source platformwas leveraged to design, simulate, and evaluate (via techno-economic analysis, TEA, and life cycle assessment, LCA) biorefineries producing acrylic acid via fermentation of sugars (glucose and xylose) to 3-HP. The biorefinery could produce acrylic acid with a minimum product selling price (MPSP) of $1.72–2.08·kg–1 (5th–95th percentiles; baseline at $1.83·kg–1). Advancements in key technological parameters (fermentation yield, titer, and saccharification solids loading) could greatly enhance the biorefinery’s performance (MPSP of $1.29–1.52·kg–1 with ∼88% probability of market-competitiveness, a global warming potential of 3.00 [2.53–3.38] kg CO2-eq·kg–1, and a fossil energy consumption of 39.9 [31.6–45.1] MJ·kg–1). A quantitative sustainable design framework was used to explore alternative fermentation regimes (neutral/low-pH fermentation across titer, yield, and productivity combinations) and alternative feedstocks (first/second-generation feedstocks across price and sugar/carbohydrate content). Overall, this research highlights the ability of agile TEA–LCA to screen promising biorefinery designs, navigate sustainability trade-offs, prioritize research needs, and establish a roadmap for the continued development of bioproducts and biofuels.</description><subject>3-hydroxypropanoic acid</subject><subject>biorefinery design</subject><subject>corn stover</subject><subject>financial viability</subject><subject>life cycle assessment (LCA)</subject><subject>techno-economic analysis (TEA)</subject><subject>titer−yield opportunity space</subject><subject>uncertainty</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkN9KwzAUxoMoOOYeQSjed-ZP0yWXc6gTBgrqdUhP0y2jbUbSir3zFXzFPYmRTdArz8134Pd9B86H0CXBU4IpudYQQh9gYxrTrqcEMM8ycoJGlOQixZngp7_2czQJYYvjSMmoICOkn_vQadvqojbJk3dlD511beKqZA5-qC1EtWXyZnXC9h-fy6H07n3YebeLth9aedckK7tuHZi67msXIrmxrtEhXKCzStfBTI46Rq93ty-LZbp6vH9YzFepZrnsUm7KAhMugQvDjCEcWJ4BLTIpKlkWEmec5zmhMyE4AKOmAE454IJWpipmMzZGV4e7LnRWBbCdgQ24tjXQKSIYlRmPJn4wgXcheFOpnbeN9oMiWH33qf70qY59xhw55CJWW9f7Nr7yT-YLfi2AEQ</recordid><startdate>20211213</startdate><enddate>20211213</enddate><creator>Bhagwat, Sarang S</creator><creator>Li, Yalin</creator><creator>Cortés-Peña, Yoel R</creator><creator>Brace, Emma C</creator><creator>Martin, Teresa A</creator><creator>Zhao, Huimin</creator><creator>Guest, Jeremy S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8863-4758</orcidid><orcidid>https://orcid.org/0000-0001-7797-2295</orcidid><orcidid>https://orcid.org/0000-0002-9069-6739</orcidid><orcidid>https://orcid.org/0000-0003-2489-2579</orcidid><orcidid>https://orcid.org/0000-0003-1742-5059</orcidid><orcidid>https://orcid.org/0000-0002-2620-2829</orcidid><orcidid>https://orcid.org/0000000288634758</orcidid><orcidid>https://orcid.org/0000000317425059</orcidid><orcidid>https://orcid.org/0000000226202829</orcidid><orcidid>https://orcid.org/0000000177972295</orcidid><orcidid>https://orcid.org/0000000290696739</orcidid><orcidid>https://orcid.org/0000000324892579</orcidid></search><sort><creationdate>20211213</creationdate><title>Sustainable Production of Acrylic Acid via 3‑Hydroxypropionic Acid from Lignocellulosic Biomass</title><author>Bhagwat, Sarang S ; Li, Yalin ; Cortés-Peña, Yoel R ; Brace, Emma C ; Martin, Teresa A ; Zhao, Huimin ; Guest, Jeremy S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-5edb0159c58e3ee15c364c2b498f9db9045566127885cc32ebc525c0b2fefb773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-hydroxypropanoic acid</topic><topic>biorefinery design</topic><topic>corn stover</topic><topic>financial viability</topic><topic>life cycle assessment (LCA)</topic><topic>techno-economic analysis (TEA)</topic><topic>titer−yield opportunity space</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhagwat, Sarang S</creatorcontrib><creatorcontrib>Li, Yalin</creatorcontrib><creatorcontrib>Cortés-Peña, Yoel R</creatorcontrib><creatorcontrib>Brace, Emma C</creatorcontrib><creatorcontrib>Martin, Teresa A</creatorcontrib><creatorcontrib>Zhao, Huimin</creatorcontrib><creatorcontrib>Guest, Jeremy S</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States). Center for Advanced Bioenergy and Bioproducts Innovation (CABBI)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhagwat, Sarang S</au><au>Li, Yalin</au><au>Cortés-Peña, Yoel R</au><au>Brace, Emma C</au><au>Martin, Teresa A</au><au>Zhao, Huimin</au><au>Guest, Jeremy S</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States). Center for Advanced Bioenergy and Bioproducts Innovation (CABBI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainable Production of Acrylic Acid via 3‑Hydroxypropionic Acid from Lignocellulosic Biomass</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2021-12-13</date><risdate>2021</risdate><volume>9</volume><issue>49</issue><spage>16659</spage><epage>16669</epage><pages>16659-16669</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Lignocellulosic biomass is a promising renewable feedstock for the sustainable manufacturing of biofuels and bioproducts. Among emerging bioproducts, 3-hydroxypropionic acid (3-HP) is of particular interest as a platform chemical to produce commercially significant chemicals such as acrylic acid. In this study, BioSTEAMan open-source platformwas leveraged to design, simulate, and evaluate (via techno-economic analysis, TEA, and life cycle assessment, LCA) biorefineries producing acrylic acid via fermentation of sugars (glucose and xylose) to 3-HP. The biorefinery could produce acrylic acid with a minimum product selling price (MPSP) of $1.72–2.08·kg–1 (5th–95th percentiles; baseline at $1.83·kg–1). Advancements in key technological parameters (fermentation yield, titer, and saccharification solids loading) could greatly enhance the biorefinery’s performance (MPSP of $1.29–1.52·kg–1 with ∼88% probability of market-competitiveness, a global warming potential of 3.00 [2.53–3.38] kg CO2-eq·kg–1, and a fossil energy consumption of 39.9 [31.6–45.1] MJ·kg–1). A quantitative sustainable design framework was used to explore alternative fermentation regimes (neutral/low-pH fermentation across titer, yield, and productivity combinations) and alternative feedstocks (first/second-generation feedstocks across price and sugar/carbohydrate content). Overall, this research highlights the ability of agile TEA–LCA to screen promising biorefinery designs, navigate sustainability trade-offs, prioritize research needs, and establish a roadmap for the continued development of bioproducts and biofuels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.1c05441</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8863-4758</orcidid><orcidid>https://orcid.org/0000-0001-7797-2295</orcidid><orcidid>https://orcid.org/0000-0002-9069-6739</orcidid><orcidid>https://orcid.org/0000-0003-2489-2579</orcidid><orcidid>https://orcid.org/0000-0003-1742-5059</orcidid><orcidid>https://orcid.org/0000-0002-2620-2829</orcidid><orcidid>https://orcid.org/0000000288634758</orcidid><orcidid>https://orcid.org/0000000317425059</orcidid><orcidid>https://orcid.org/0000000226202829</orcidid><orcidid>https://orcid.org/0000000177972295</orcidid><orcidid>https://orcid.org/0000000290696739</orcidid><orcidid>https://orcid.org/0000000324892579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2021-12, Vol.9 (49), p.16659-16669
issn 2168-0485
2168-0485
language eng
recordid cdi_osti_scitechconnect_1832945
source ACS Publications
subjects 3-hydroxypropanoic acid
biorefinery design
corn stover
financial viability
life cycle assessment (LCA)
techno-economic analysis (TEA)
titer−yield opportunity space
uncertainty
title Sustainable Production of Acrylic Acid via 3‑Hydroxypropionic Acid from Lignocellulosic Biomass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainable%20Production%20of%20Acrylic%20Acid%20via%203%E2%80%91Hydroxypropionic%20Acid%20from%20Lignocellulosic%20Biomass&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Bhagwat,%20Sarang%20S&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States).%20Center%20for%20Advanced%20Bioenergy%20and%20Bioproducts%20Innovation%20(CABBI)&rft.date=2021-12-13&rft.volume=9&rft.issue=49&rft.spage=16659&rft.epage=16669&rft.pages=16659-16669&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.1c05441&rft_dat=%3Cacs_osti_%3Ea445406841%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true