The Atmospheric Carbon and Transport (ACT)-America Mission
The Atmospheric Carbon and Transport (ACT)-America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Meteorological Society 2021-09, Vol.102 (9), p.E1714-E1734 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1734 |
---|---|
container_issue | 9 |
container_start_page | E1714 |
container_title | Bulletin of the American Meteorological Society |
container_volume | 102 |
creator | Davis, Kenneth J. Browell, Edward V. Feng, Sha Lauvaux, Thomas Obland, Michael D. Pal, Sandip Baier, Bianca C. Baker, David F. Baker, Ian T. Barkley, Zachary R. Bowman, Kevin W. Cui, Yu Yan Denning, A. Scott DiGangi, Joshua P. Dobler, Jeremy T. Fried, Alan Gerken, Tobias Keller, Klaus Lin, Bing Nehrir, Amin R. Normile, Caroline P. O’Dell, Christopher W. Ott, Lesley E. Roiger, Anke Schuh, Andrew E. Sweeney, Colm Wei, Yaxing Weir, Brad Xue, Ming Williams, Christopher A. |
description | The Atmospheric Carbon and Transport (ACT)-America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric state variables collected 1,140.7 flight hours of research data, distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five 6-week seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair-weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America dataset and ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly accurate and precise subcontinental GHG flux estimates. |
doi_str_mv | 10.1175/BAMS-D-20-0300.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1832698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27207536</jstor_id><sourcerecordid>27207536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-8a9b0bfb8e08892fe7dad55702532c53ab62f0f168b91638369ac939960d7b043</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqWwsyBFsNAhcLYbf7CFFihSKwbKbDmuo6Rq42C7SPz3JASx3Omefvek9xC6xHCHMc_uH_PVezpPCaRAodOO0Ahn_TXl_BiNAICm3eCn6CyEbX9SgUfoYV3ZJI97F9rK-tokM-0L1yS62SRrr5vQOh-T23y2nqT5vid0sqpDqF1zjk5KvQv24m-P0cfz03q2SJdvL6-zfJkaKllMhZYFFGUhLAghSWn5Rm-yjAPJKDEZ1QUjJZSYiUJiRgVlUhtJpWSw4QVM6RhdD74uxFoFU0drKuOaxpqosKCESdFBkwGq9E61vt5r_62crtUiX6pe-81LMP3CHXszsK13nwcbotq6g2-6DIowPpV0ygXrKBgo410I3pb_thhUX7nqK1dzRUD1lave-Gp42Ybo_D9POAGeUUZ_ACMQeWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674934786</pqid></control><display><type>article</type><title>The Atmospheric Carbon and Transport (ACT)-America Mission</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Davis, Kenneth J. ; Browell, Edward V. ; Feng, Sha ; Lauvaux, Thomas ; Obland, Michael D. ; Pal, Sandip ; Baier, Bianca C. ; Baker, David F. ; Baker, Ian T. ; Barkley, Zachary R. ; Bowman, Kevin W. ; Cui, Yu Yan ; Denning, A. Scott ; DiGangi, Joshua P. ; Dobler, Jeremy T. ; Fried, Alan ; Gerken, Tobias ; Keller, Klaus ; Lin, Bing ; Nehrir, Amin R. ; Normile, Caroline P. ; O’Dell, Christopher W. ; Ott, Lesley E. ; Roiger, Anke ; Schuh, Andrew E. ; Sweeney, Colm ; Wei, Yaxing ; Weir, Brad ; Xue, Ming ; Williams, Christopher A.</creator><creatorcontrib>Davis, Kenneth J. ; Browell, Edward V. ; Feng, Sha ; Lauvaux, Thomas ; Obland, Michael D. ; Pal, Sandip ; Baier, Bianca C. ; Baker, David F. ; Baker, Ian T. ; Barkley, Zachary R. ; Bowman, Kevin W. ; Cui, Yu Yan ; Denning, A. Scott ; DiGangi, Joshua P. ; Dobler, Jeremy T. ; Fried, Alan ; Gerken, Tobias ; Keller, Klaus ; Lin, Bing ; Nehrir, Amin R. ; Normile, Caroline P. ; O’Dell, Christopher W. ; Ott, Lesley E. ; Roiger, Anke ; Schuh, Andrew E. ; Sweeney, Colm ; Wei, Yaxing ; Weir, Brad ; Xue, Ming ; Williams, Christopher A. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The Atmospheric Carbon and Transport (ACT)-America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric state variables collected 1,140.7 flight hours of research data, distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five 6-week seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair-weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America dataset and ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly accurate and precise subcontinental GHG flux estimates.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-20-0300.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Air masses ; Aircraft ; Altitude ; Atmosphere ; Atmospheric boundary layer ; Atmospheric models ; Atmospheric transport ; Benchmarks ; Biosphere-atmosphere interaction ; Boundary layer ; Boundary layers ; Carbon ; Carbon cycle ; Carbon dioxide ; Climate change ; Continental interfaces, environment ; Ecosystems ; Emissions ; ENVIRONMENTAL SCIENCES ; Estimates ; Flight ; Fluxes ; Gases ; Greenhouse gases ; Inflow ; Inverse methods ; Inversions ; Observatories ; Ocean, Atmosphere ; Regional development ; Remote sensors ; Research aircraft ; Respiration ; Sciences of the Universe ; Synoptic-scale processes ; Trace gases ; Transport ; Troposphere ; Weather</subject><ispartof>Bulletin of the American Meteorological Society, 2021-09, Vol.102 (9), p.E1714-E1734</ispartof><rights>2021 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-8a9b0bfb8e08892fe7dad55702532c53ab62f0f168b91638369ac939960d7b043</citedby><orcidid>0000-0002-4517-0797 ; 0000-0002-7697-742X ; 0000-0002-7184-6594 ; 0000-0001-6160-0577 ; 0000-0003-4738-8375 ; 0000-0002-2376-0868 ; 0000-0003-0379-9180 ; 0000-0001-5617-186X ; 0000-0002-5451-8687 ; 0000-0001-9497-9990 ; 0000000169240078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3679,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03381213$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1832698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, Kenneth J.</creatorcontrib><creatorcontrib>Browell, Edward V.</creatorcontrib><creatorcontrib>Feng, Sha</creatorcontrib><creatorcontrib>Lauvaux, Thomas</creatorcontrib><creatorcontrib>Obland, Michael D.</creatorcontrib><creatorcontrib>Pal, Sandip</creatorcontrib><creatorcontrib>Baier, Bianca C.</creatorcontrib><creatorcontrib>Baker, David F.</creatorcontrib><creatorcontrib>Baker, Ian T.</creatorcontrib><creatorcontrib>Barkley, Zachary R.</creatorcontrib><creatorcontrib>Bowman, Kevin W.</creatorcontrib><creatorcontrib>Cui, Yu Yan</creatorcontrib><creatorcontrib>Denning, A. Scott</creatorcontrib><creatorcontrib>DiGangi, Joshua P.</creatorcontrib><creatorcontrib>Dobler, Jeremy T.</creatorcontrib><creatorcontrib>Fried, Alan</creatorcontrib><creatorcontrib>Gerken, Tobias</creatorcontrib><creatorcontrib>Keller, Klaus</creatorcontrib><creatorcontrib>Lin, Bing</creatorcontrib><creatorcontrib>Nehrir, Amin R.</creatorcontrib><creatorcontrib>Normile, Caroline P.</creatorcontrib><creatorcontrib>O’Dell, Christopher W.</creatorcontrib><creatorcontrib>Ott, Lesley E.</creatorcontrib><creatorcontrib>Roiger, Anke</creatorcontrib><creatorcontrib>Schuh, Andrew E.</creatorcontrib><creatorcontrib>Sweeney, Colm</creatorcontrib><creatorcontrib>Wei, Yaxing</creatorcontrib><creatorcontrib>Weir, Brad</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Williams, Christopher A.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>The Atmospheric Carbon and Transport (ACT)-America Mission</title><title>Bulletin of the American Meteorological Society</title><description>The Atmospheric Carbon and Transport (ACT)-America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric state variables collected 1,140.7 flight hours of research data, distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five 6-week seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair-weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America dataset and ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly accurate and precise subcontinental GHG flux estimates.</description><subject>Air masses</subject><subject>Aircraft</subject><subject>Altitude</subject><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric models</subject><subject>Atmospheric transport</subject><subject>Benchmarks</subject><subject>Biosphere-atmosphere interaction</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Continental interfaces, environment</subject><subject>Ecosystems</subject><subject>Emissions</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Estimates</subject><subject>Flight</subject><subject>Fluxes</subject><subject>Gases</subject><subject>Greenhouse gases</subject><subject>Inflow</subject><subject>Inverse methods</subject><subject>Inversions</subject><subject>Observatories</subject><subject>Ocean, Atmosphere</subject><subject>Regional development</subject><subject>Remote sensors</subject><subject>Research aircraft</subject><subject>Respiration</subject><subject>Sciences of the Universe</subject><subject>Synoptic-scale processes</subject><subject>Trace gases</subject><subject>Transport</subject><subject>Troposphere</subject><subject>Weather</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kL1PwzAQxS0EEqWwsyBFsNAhcLYbf7CFFihSKwbKbDmuo6Rq42C7SPz3JASx3Omefvek9xC6xHCHMc_uH_PVezpPCaRAodOO0Ahn_TXl_BiNAICm3eCn6CyEbX9SgUfoYV3ZJI97F9rK-tokM-0L1yS62SRrr5vQOh-T23y2nqT5vid0sqpDqF1zjk5KvQv24m-P0cfz03q2SJdvL6-zfJkaKllMhZYFFGUhLAghSWn5Rm-yjAPJKDEZ1QUjJZSYiUJiRgVlUhtJpWSw4QVM6RhdD74uxFoFU0drKuOaxpqosKCESdFBkwGq9E61vt5r_62crtUiX6pe-81LMP3CHXszsK13nwcbotq6g2-6DIowPpV0ygXrKBgo410I3pb_thhUX7nqK1dzRUD1lave-Gp42Ybo_D9POAGeUUZ_ACMQeWg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Davis, Kenneth J.</creator><creator>Browell, Edward V.</creator><creator>Feng, Sha</creator><creator>Lauvaux, Thomas</creator><creator>Obland, Michael D.</creator><creator>Pal, Sandip</creator><creator>Baier, Bianca C.</creator><creator>Baker, David F.</creator><creator>Baker, Ian T.</creator><creator>Barkley, Zachary R.</creator><creator>Bowman, Kevin W.</creator><creator>Cui, Yu Yan</creator><creator>Denning, A. Scott</creator><creator>DiGangi, Joshua P.</creator><creator>Dobler, Jeremy T.</creator><creator>Fried, Alan</creator><creator>Gerken, Tobias</creator><creator>Keller, Klaus</creator><creator>Lin, Bing</creator><creator>Nehrir, Amin R.</creator><creator>Normile, Caroline P.</creator><creator>O’Dell, Christopher W.</creator><creator>Ott, Lesley E.</creator><creator>Roiger, Anke</creator><creator>Schuh, Andrew E.</creator><creator>Sweeney, Colm</creator><creator>Wei, Yaxing</creator><creator>Weir, Brad</creator><creator>Xue, Ming</creator><creator>Williams, Christopher A.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4517-0797</orcidid><orcidid>https://orcid.org/0000-0002-7697-742X</orcidid><orcidid>https://orcid.org/0000-0002-7184-6594</orcidid><orcidid>https://orcid.org/0000-0001-6160-0577</orcidid><orcidid>https://orcid.org/0000-0003-4738-8375</orcidid><orcidid>https://orcid.org/0000-0002-2376-0868</orcidid><orcidid>https://orcid.org/0000-0003-0379-9180</orcidid><orcidid>https://orcid.org/0000-0001-5617-186X</orcidid><orcidid>https://orcid.org/0000-0002-5451-8687</orcidid><orcidid>https://orcid.org/0000-0001-9497-9990</orcidid><orcidid>https://orcid.org/0000000169240078</orcidid></search><sort><creationdate>20210901</creationdate><title>The Atmospheric Carbon and Transport (ACT)-America Mission</title><author>Davis, Kenneth J. ; Browell, Edward V. ; Feng, Sha ; Lauvaux, Thomas ; Obland, Michael D. ; Pal, Sandip ; Baier, Bianca C. ; Baker, David F. ; Baker, Ian T. ; Barkley, Zachary R. ; Bowman, Kevin W. ; Cui, Yu Yan ; Denning, A. Scott ; DiGangi, Joshua P. ; Dobler, Jeremy T. ; Fried, Alan ; Gerken, Tobias ; Keller, Klaus ; Lin, Bing ; Nehrir, Amin R. ; Normile, Caroline P. ; O’Dell, Christopher W. ; Ott, Lesley E. ; Roiger, Anke ; Schuh, Andrew E. ; Sweeney, Colm ; Wei, Yaxing ; Weir, Brad ; Xue, Ming ; Williams, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-8a9b0bfb8e08892fe7dad55702532c53ab62f0f168b91638369ac939960d7b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air masses</topic><topic>Aircraft</topic><topic>Altitude</topic><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric models</topic><topic>Atmospheric transport</topic><topic>Benchmarks</topic><topic>Biosphere-atmosphere interaction</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Continental interfaces, environment</topic><topic>Ecosystems</topic><topic>Emissions</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Estimates</topic><topic>Flight</topic><topic>Fluxes</topic><topic>Gases</topic><topic>Greenhouse gases</topic><topic>Inflow</topic><topic>Inverse methods</topic><topic>Inversions</topic><topic>Observatories</topic><topic>Ocean, Atmosphere</topic><topic>Regional development</topic><topic>Remote sensors</topic><topic>Research aircraft</topic><topic>Respiration</topic><topic>Sciences of the Universe</topic><topic>Synoptic-scale processes</topic><topic>Trace gases</topic><topic>Transport</topic><topic>Troposphere</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Kenneth J.</creatorcontrib><creatorcontrib>Browell, Edward V.</creatorcontrib><creatorcontrib>Feng, Sha</creatorcontrib><creatorcontrib>Lauvaux, Thomas</creatorcontrib><creatorcontrib>Obland, Michael D.</creatorcontrib><creatorcontrib>Pal, Sandip</creatorcontrib><creatorcontrib>Baier, Bianca C.</creatorcontrib><creatorcontrib>Baker, David F.</creatorcontrib><creatorcontrib>Baker, Ian T.</creatorcontrib><creatorcontrib>Barkley, Zachary R.</creatorcontrib><creatorcontrib>Bowman, Kevin W.</creatorcontrib><creatorcontrib>Cui, Yu Yan</creatorcontrib><creatorcontrib>Denning, A. Scott</creatorcontrib><creatorcontrib>DiGangi, Joshua P.</creatorcontrib><creatorcontrib>Dobler, Jeremy T.</creatorcontrib><creatorcontrib>Fried, Alan</creatorcontrib><creatorcontrib>Gerken, Tobias</creatorcontrib><creatorcontrib>Keller, Klaus</creatorcontrib><creatorcontrib>Lin, Bing</creatorcontrib><creatorcontrib>Nehrir, Amin R.</creatorcontrib><creatorcontrib>Normile, Caroline P.</creatorcontrib><creatorcontrib>O’Dell, Christopher W.</creatorcontrib><creatorcontrib>Ott, Lesley E.</creatorcontrib><creatorcontrib>Roiger, Anke</creatorcontrib><creatorcontrib>Schuh, Andrew E.</creatorcontrib><creatorcontrib>Sweeney, Colm</creatorcontrib><creatorcontrib>Wei, Yaxing</creatorcontrib><creatorcontrib>Weir, Brad</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Williams, Christopher A.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Kenneth J.</au><au>Browell, Edward V.</au><au>Feng, Sha</au><au>Lauvaux, Thomas</au><au>Obland, Michael D.</au><au>Pal, Sandip</au><au>Baier, Bianca C.</au><au>Baker, David F.</au><au>Baker, Ian T.</au><au>Barkley, Zachary R.</au><au>Bowman, Kevin W.</au><au>Cui, Yu Yan</au><au>Denning, A. Scott</au><au>DiGangi, Joshua P.</au><au>Dobler, Jeremy T.</au><au>Fried, Alan</au><au>Gerken, Tobias</au><au>Keller, Klaus</au><au>Lin, Bing</au><au>Nehrir, Amin R.</au><au>Normile, Caroline P.</au><au>O’Dell, Christopher W.</au><au>Ott, Lesley E.</au><au>Roiger, Anke</au><au>Schuh, Andrew E.</au><au>Sweeney, Colm</au><au>Wei, Yaxing</au><au>Weir, Brad</au><au>Xue, Ming</au><au>Williams, Christopher A.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Atmospheric Carbon and Transport (ACT)-America Mission</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>102</volume><issue>9</issue><spage>E1714</spage><epage>E1734</epage><pages>E1714-E1734</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>The Atmospheric Carbon and Transport (ACT)-America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric state variables collected 1,140.7 flight hours of research data, distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five 6-week seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair-weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America dataset and ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly accurate and precise subcontinental GHG flux estimates.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-20-0300.1</doi><orcidid>https://orcid.org/0000-0002-4517-0797</orcidid><orcidid>https://orcid.org/0000-0002-7697-742X</orcidid><orcidid>https://orcid.org/0000-0002-7184-6594</orcidid><orcidid>https://orcid.org/0000-0001-6160-0577</orcidid><orcidid>https://orcid.org/0000-0003-4738-8375</orcidid><orcidid>https://orcid.org/0000-0002-2376-0868</orcidid><orcidid>https://orcid.org/0000-0003-0379-9180</orcidid><orcidid>https://orcid.org/0000-0001-5617-186X</orcidid><orcidid>https://orcid.org/0000-0002-5451-8687</orcidid><orcidid>https://orcid.org/0000-0001-9497-9990</orcidid><orcidid>https://orcid.org/0000000169240078</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0007 |
ispartof | Bulletin of the American Meteorological Society, 2021-09, Vol.102 (9), p.E1714-E1734 |
issn | 0003-0007 1520-0477 |
language | eng |
recordid | cdi_osti_scitechconnect_1832698 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals |
subjects | Air masses Aircraft Altitude Atmosphere Atmospheric boundary layer Atmospheric models Atmospheric transport Benchmarks Biosphere-atmosphere interaction Boundary layer Boundary layers Carbon Carbon cycle Carbon dioxide Climate change Continental interfaces, environment Ecosystems Emissions ENVIRONMENTAL SCIENCES Estimates Flight Fluxes Gases Greenhouse gases Inflow Inverse methods Inversions Observatories Ocean, Atmosphere Regional development Remote sensors Research aircraft Respiration Sciences of the Universe Synoptic-scale processes Trace gases Transport Troposphere Weather |
title | The Atmospheric Carbon and Transport (ACT)-America Mission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Atmospheric%20Carbon%20and%20Transport%20(ACT)-America%20Mission&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Davis,%20Kenneth%20J.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2021-09-01&rft.volume=102&rft.issue=9&rft.spage=E1714&rft.epage=E1734&rft.pages=E1714-E1734&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-20-0300.1&rft_dat=%3Cjstor_osti_%3E27207536%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674934786&rft_id=info:pmid/&rft_jstor_id=27207536&rfr_iscdi=true |