In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor–Acceptor Stenhouse Adducts
Detailed mechanistic understanding of multistep chemical reactions triggered by internal conversion via a conical intersection is a challenging task that emphasizes limitations in theoretical and experimental techniques. We present a discovery-based, hypothesis-free computational approach based on f...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-12, Vol.143 (48), p.20015-20021 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20021 |
---|---|
container_issue | 48 |
container_start_page | 20015 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Sanchez, David M Raucci, Umberto Martínez, Todd J |
description | Detailed mechanistic understanding of multistep chemical reactions triggered by internal conversion via a conical intersection is a challenging task that emphasizes limitations in theoretical and experimental techniques. We present a discovery-based, hypothesis-free computational approach based on first-principles molecular dynamics to discover and refine the switching mechanism of donor–acceptor Stenhouse adducts (DASAs). We simulate the photochemical experiment in silico, following the “hot” ground state dynamics for 10 ps after photoexcitation. Using state-of-the-art graphical processing units-enabled electronic structure calculations we performed in total ∼2 ns of nonadiabatic ab initio molecular dynamics discovering (a) critical intermediates that are involved in the open-to-closed transformation, (b) several competing pathways which lower the overall switching yield, and (c) key elements for future design strategies. Our dynamics describe the natural evolution of both the nuclear and electronic degrees of freedom that govern the interconversion between DASA ground-state intermediates, exposing significant elements for future design strategies of molecular switches. |
doi_str_mv | 10.1021/jacs.1c06648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1832320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596454620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-51e217f0cf3ba62959a487f45a18521933674050c800b4f9c640924c94c8ac0f3</originalsourceid><addsrcrecordid>eNptkcFuEzEQhi0EomnhxhlZnDg0xfZ6vTa3aFtopCIOLeeVM5ltHG3sYHsr5ca5V96QJ8EhKVw4eTzzzW_P_IS84eyCM8E_rC2kCw5MKamfkQmvBZvWXKjnZMIYE9NGq-qEnKa0LlcpNH9JTirZKK6NmZDHuae3bnAQ6KVLEB4w7mjo6ZdxyC5l3NJ2hZsSlfTcu-xsxiVd7KilbfAO7FDSGWNCyC74j_RuhaXFDgP6e-fvaWsT7gUvgw_x14-fMwDc5hDpbUa_CmOpzpbLEXJ6RV70dkj4-niekW-fru7a6-nN18_zdnYztZU2ucyGgjc9g75aWCVMbazUTS9ry3UtuKkq1UhWM9CMLWRvQElmhAQjQVtgfXVG3h10Q8quS-AywgqC92WEjutKVIIV6P0B2sbwfcSUu7IEwGGwHsunO1EbJWup_qDnBxRiSCli322j29i46zjr9hZ1e4u6o0UFf3tUHhcbXP6Fnzz59_S-ax3G6Ms2_q_1G0KHmpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596454620</pqid></control><display><type>article</type><title>In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor–Acceptor Stenhouse Adducts</title><source>ACS Publications</source><creator>Sanchez, David M ; Raucci, Umberto ; Martínez, Todd J</creator><creatorcontrib>Sanchez, David M ; Raucci, Umberto ; Martínez, Todd J ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Detailed mechanistic understanding of multistep chemical reactions triggered by internal conversion via a conical intersection is a challenging task that emphasizes limitations in theoretical and experimental techniques. We present a discovery-based, hypothesis-free computational approach based on first-principles molecular dynamics to discover and refine the switching mechanism of donor–acceptor Stenhouse adducts (DASAs). We simulate the photochemical experiment in silico, following the “hot” ground state dynamics for 10 ps after photoexcitation. Using state-of-the-art graphical processing units-enabled electronic structure calculations we performed in total ∼2 ns of nonadiabatic ab initio molecular dynamics discovering (a) critical intermediates that are involved in the open-to-closed transformation, (b) several competing pathways which lower the overall switching yield, and (c) key elements for future design strategies. Our dynamics describe the natural evolution of both the nuclear and electronic degrees of freedom that govern the interconversion between DASA ground-state intermediates, exposing significant elements for future design strategies of molecular switches.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c06648</identifier><identifier>PMID: 34761899</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; molecular dynamics ; nitrogen ; photoisomerization ; photoswitching ; quantum mechanics</subject><ispartof>Journal of the American Chemical Society, 2021-12, Vol.143 (48), p.20015-20021</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-51e217f0cf3ba62959a487f45a18521933674050c800b4f9c640924c94c8ac0f3</citedby><cites>FETCH-LOGICAL-a389t-51e217f0cf3ba62959a487f45a18521933674050c800b4f9c640924c94c8ac0f3</cites><orcidid>0000-0003-0697-7579 ; 0000-0002-8219-224X ; 0000-0002-4798-8947 ; 0000000306977579 ; 000000028219224X ; 0000000247988947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c06648$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c06648$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34761899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1832320$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, David M</creatorcontrib><creatorcontrib>Raucci, Umberto</creatorcontrib><creatorcontrib>Martínez, Todd J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor–Acceptor Stenhouse Adducts</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Detailed mechanistic understanding of multistep chemical reactions triggered by internal conversion via a conical intersection is a challenging task that emphasizes limitations in theoretical and experimental techniques. We present a discovery-based, hypothesis-free computational approach based on first-principles molecular dynamics to discover and refine the switching mechanism of donor–acceptor Stenhouse adducts (DASAs). We simulate the photochemical experiment in silico, following the “hot” ground state dynamics for 10 ps after photoexcitation. Using state-of-the-art graphical processing units-enabled electronic structure calculations we performed in total ∼2 ns of nonadiabatic ab initio molecular dynamics discovering (a) critical intermediates that are involved in the open-to-closed transformation, (b) several competing pathways which lower the overall switching yield, and (c) key elements for future design strategies. Our dynamics describe the natural evolution of both the nuclear and electronic degrees of freedom that govern the interconversion between DASA ground-state intermediates, exposing significant elements for future design strategies of molecular switches.</description><subject>chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>molecular dynamics</subject><subject>nitrogen</subject><subject>photoisomerization</subject><subject>photoswitching</subject><subject>quantum mechanics</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkcFuEzEQhi0EomnhxhlZnDg0xfZ6vTa3aFtopCIOLeeVM5ltHG3sYHsr5ca5V96QJ8EhKVw4eTzzzW_P_IS84eyCM8E_rC2kCw5MKamfkQmvBZvWXKjnZMIYE9NGq-qEnKa0LlcpNH9JTirZKK6NmZDHuae3bnAQ6KVLEB4w7mjo6ZdxyC5l3NJ2hZsSlfTcu-xsxiVd7KilbfAO7FDSGWNCyC74j_RuhaXFDgP6e-fvaWsT7gUvgw_x14-fMwDc5hDpbUa_CmOpzpbLEXJ6RV70dkj4-niekW-fru7a6-nN18_zdnYztZU2ucyGgjc9g75aWCVMbazUTS9ry3UtuKkq1UhWM9CMLWRvQElmhAQjQVtgfXVG3h10Q8quS-AywgqC92WEjutKVIIV6P0B2sbwfcSUu7IEwGGwHsunO1EbJWup_qDnBxRiSCli322j29i46zjr9hZ1e4u6o0UFf3tUHhcbXP6Fnzz59_S-ax3G6Ms2_q_1G0KHmpg</recordid><startdate>20211208</startdate><enddate>20211208</enddate><creator>Sanchez, David M</creator><creator>Raucci, Umberto</creator><creator>Martínez, Todd J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0697-7579</orcidid><orcidid>https://orcid.org/0000-0002-8219-224X</orcidid><orcidid>https://orcid.org/0000-0002-4798-8947</orcidid><orcidid>https://orcid.org/0000000306977579</orcidid><orcidid>https://orcid.org/000000028219224X</orcidid><orcidid>https://orcid.org/0000000247988947</orcidid></search><sort><creationdate>20211208</creationdate><title>In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor–Acceptor Stenhouse Adducts</title><author>Sanchez, David M ; Raucci, Umberto ; Martínez, Todd J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-51e217f0cf3ba62959a487f45a18521933674050c800b4f9c640924c94c8ac0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>molecular dynamics</topic><topic>nitrogen</topic><topic>photoisomerization</topic><topic>photoswitching</topic><topic>quantum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, David M</creatorcontrib><creatorcontrib>Raucci, Umberto</creatorcontrib><creatorcontrib>Martínez, Todd J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, David M</au><au>Raucci, Umberto</au><au>Martínez, Todd J</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor–Acceptor Stenhouse Adducts</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-12-08</date><risdate>2021</risdate><volume>143</volume><issue>48</issue><spage>20015</spage><epage>20021</epage><pages>20015-20021</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Detailed mechanistic understanding of multistep chemical reactions triggered by internal conversion via a conical intersection is a challenging task that emphasizes limitations in theoretical and experimental techniques. We present a discovery-based, hypothesis-free computational approach based on first-principles molecular dynamics to discover and refine the switching mechanism of donor–acceptor Stenhouse adducts (DASAs). We simulate the photochemical experiment in silico, following the “hot” ground state dynamics for 10 ps after photoexcitation. Using state-of-the-art graphical processing units-enabled electronic structure calculations we performed in total ∼2 ns of nonadiabatic ab initio molecular dynamics discovering (a) critical intermediates that are involved in the open-to-closed transformation, (b) several competing pathways which lower the overall switching yield, and (c) key elements for future design strategies. Our dynamics describe the natural evolution of both the nuclear and electronic degrees of freedom that govern the interconversion between DASA ground-state intermediates, exposing significant elements for future design strategies of molecular switches.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34761899</pmid><doi>10.1021/jacs.1c06648</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0697-7579</orcidid><orcidid>https://orcid.org/0000-0002-8219-224X</orcidid><orcidid>https://orcid.org/0000-0002-4798-8947</orcidid><orcidid>https://orcid.org/0000000306977579</orcidid><orcidid>https://orcid.org/000000028219224X</orcidid><orcidid>https://orcid.org/0000000247988947</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-12, Vol.143 (48), p.20015-20021 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1832320 |
source | ACS Publications |
subjects | chemistry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY molecular dynamics nitrogen photoisomerization photoswitching quantum mechanics |
title | In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor–Acceptor Stenhouse Adducts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Discovery%20of%20Multistep%20Chemistry%20Initiated%20by%20a%20Conical%20Intersection:%20The%20Challenging%20Case%20of%20Donor%E2%80%93Acceptor%20Stenhouse%20Adducts&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Sanchez,%20David%20M&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-12-08&rft.volume=143&rft.issue=48&rft.spage=20015&rft.epage=20021&rft.pages=20015-20021&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c06648&rft_dat=%3Cproquest_osti_%3E2596454620%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596454620&rft_id=info:pmid/34761899&rfr_iscdi=true |