Influence of metallic contaminants on the electrochemical and thermal behavior of Li-ion electrodes
Emerging nondestructive (direct) recycling techniques for lithium-ion batteries may introduce metallic impurities into recycled electrodes. In the present work, the impact of such nonionic contaminants on the practical performance of both anode and cathode materials is evaluated using a synergistic...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2022-01, Vol.518 (C), p.230760, Article 230760 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 230760 |
container_title | Journal of power sources |
container_volume | 518 |
creator | Fink, Kae E. Polzin, Bryant J. Vaughey, John T. Major, Joshua J. Dunlop, Alison R. Trask, Stephen E. Jeka, Gerald T. Spangenberger, Jeffrey S. Keyser, Matthew A. |
description | Emerging nondestructive (direct) recycling techniques for lithium-ion batteries may introduce metallic impurities into recycled electrodes. In the present work, the impact of such nonionic contaminants on the practical performance of both anode and cathode materials is evaluated using a synergistic combination of electrochemical and thermal analysis. The impurities under study have been selected through evaluation of industrially shredded batteries, and include Fe0, Al0, Mg0, Cu0, and Si0. The electrochemical behavior of materials containing each individual contaminant at either the anode or the cathode is evaluated in both half-cell and full-cell format. Further, the first-cycle thermal signatures of full cells are used to validate and complement electrochemical signatures, and the two techniques are used in conjunction to suggest distinct mechanisms of electrochemical reactivity for the various impurities. At the anode, metallic contaminants are found to disrupt performance through direct reaction with Li and may serve as weak catalysts to accelerate electrolyte degradation. At the cathode, metallic contaminants show evidence of crossover during formation cycling to disrupt SEI formation. We suggest that coupled electrochemical and thermal analysis may be used to both identify the presence of contaminants and to elucidate specific mechanisms of reactivity for metallic impurities under anodic and cathodic conditions.
•Coupled thermal & electrochemical signatures of metallic contaminants are established.•Cathode contaminants are found to disrupt SEI formation through crossover reactions.•Anode contaminants adversely react with Li & accelerate electrolyte degradation.•Complementary characterization offers powerful tool to selectively identify impurities. |
doi_str_mv | 10.1016/j.jpowsour.2021.230760 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1832074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775321012520</els_id><sourcerecordid>S0378775321012520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-aa65fd0998845ac2e3ab3496549dd5945329ae3c6040e9e3e579f2f39e1b23543</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BSneW_PRNM1NWfxYWPCi55BNpzSlbZYku-K_t6Hr2dMMw_u-M_MgdE9wQTCpHvuiP7jv4I6-oJiSgjIsKnyBVqQWLKeC80u0wkzUuRCcXaObEHqMMSECr5DZTu1whMlA5tpshKiHwZrMuCnq0U56iiFzUxY7yGAAE70zHYzW6CHTU5Pmfpz7PXT6ZJ1PITub29lyljcQbtFVq4cAd-e6Rl-vL5-b93z38bbdPO9yw2oRc60r3jZYyrouuTYUmN6zUla8lE3DZckZlRqYqXCJQQIDLmRLWyaB7CnjJVujhyXXhWhVMDaC6eZPpvkQRWpGsUiiahEZ70Lw0KqDt6P2P4pglXiqXv3xVImnWnjOxqfFCPMLJws-bUjgGuvTgsbZ_yJ-AV2Mgzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of metallic contaminants on the electrochemical and thermal behavior of Li-ion electrodes</title><source>Elsevier ScienceDirect Journals</source><creator>Fink, Kae E. ; Polzin, Bryant J. ; Vaughey, John T. ; Major, Joshua J. ; Dunlop, Alison R. ; Trask, Stephen E. ; Jeka, Gerald T. ; Spangenberger, Jeffrey S. ; Keyser, Matthew A.</creator><creatorcontrib>Fink, Kae E. ; Polzin, Bryant J. ; Vaughey, John T. ; Major, Joshua J. ; Dunlop, Alison R. ; Trask, Stephen E. ; Jeka, Gerald T. ; Spangenberger, Jeffrey S. ; Keyser, Matthew A.</creatorcontrib><description>Emerging nondestructive (direct) recycling techniques for lithium-ion batteries may introduce metallic impurities into recycled electrodes. In the present work, the impact of such nonionic contaminants on the practical performance of both anode and cathode materials is evaluated using a synergistic combination of electrochemical and thermal analysis. The impurities under study have been selected through evaluation of industrially shredded batteries, and include Fe0, Al0, Mg0, Cu0, and Si0. The electrochemical behavior of materials containing each individual contaminant at either the anode or the cathode is evaluated in both half-cell and full-cell format. Further, the first-cycle thermal signatures of full cells are used to validate and complement electrochemical signatures, and the two techniques are used in conjunction to suggest distinct mechanisms of electrochemical reactivity for the various impurities. At the anode, metallic contaminants are found to disrupt performance through direct reaction with Li and may serve as weak catalysts to accelerate electrolyte degradation. At the cathode, metallic contaminants show evidence of crossover during formation cycling to disrupt SEI formation. We suggest that coupled electrochemical and thermal analysis may be used to both identify the presence of contaminants and to elucidate specific mechanisms of reactivity for metallic impurities under anodic and cathodic conditions.
•Coupled thermal & electrochemical signatures of metallic contaminants are established.•Cathode contaminants are found to disrupt SEI formation through crossover reactions.•Anode contaminants adversely react with Li & accelerate electrolyte degradation.•Complementary characterization offers powerful tool to selectively identify impurities.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2021.230760</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Contaminant ; Differential electrochemical analysis ; Direct recycling ; Isothermal microcalorimetry ; Lithium-ion battery recycling</subject><ispartof>Journal of power sources, 2022-01, Vol.518 (C), p.230760, Article 230760</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-aa65fd0998845ac2e3ab3496549dd5945329ae3c6040e9e3e579f2f39e1b23543</citedby><cites>FETCH-LOGICAL-c387t-aa65fd0998845ac2e3ab3496549dd5945329ae3c6040e9e3e579f2f39e1b23543</cites><orcidid>0000-0001-9363-4632 ; 0000-0001-9785-0375 ; 0000000197850375 ; 0000000193634632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775321012520$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1832074$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fink, Kae E.</creatorcontrib><creatorcontrib>Polzin, Bryant J.</creatorcontrib><creatorcontrib>Vaughey, John T.</creatorcontrib><creatorcontrib>Major, Joshua J.</creatorcontrib><creatorcontrib>Dunlop, Alison R.</creatorcontrib><creatorcontrib>Trask, Stephen E.</creatorcontrib><creatorcontrib>Jeka, Gerald T.</creatorcontrib><creatorcontrib>Spangenberger, Jeffrey S.</creatorcontrib><creatorcontrib>Keyser, Matthew A.</creatorcontrib><title>Influence of metallic contaminants on the electrochemical and thermal behavior of Li-ion electrodes</title><title>Journal of power sources</title><description>Emerging nondestructive (direct) recycling techniques for lithium-ion batteries may introduce metallic impurities into recycled electrodes. In the present work, the impact of such nonionic contaminants on the practical performance of both anode and cathode materials is evaluated using a synergistic combination of electrochemical and thermal analysis. The impurities under study have been selected through evaluation of industrially shredded batteries, and include Fe0, Al0, Mg0, Cu0, and Si0. The electrochemical behavior of materials containing each individual contaminant at either the anode or the cathode is evaluated in both half-cell and full-cell format. Further, the first-cycle thermal signatures of full cells are used to validate and complement electrochemical signatures, and the two techniques are used in conjunction to suggest distinct mechanisms of electrochemical reactivity for the various impurities. At the anode, metallic contaminants are found to disrupt performance through direct reaction with Li and may serve as weak catalysts to accelerate electrolyte degradation. At the cathode, metallic contaminants show evidence of crossover during formation cycling to disrupt SEI formation. We suggest that coupled electrochemical and thermal analysis may be used to both identify the presence of contaminants and to elucidate specific mechanisms of reactivity for metallic impurities under anodic and cathodic conditions.
•Coupled thermal & electrochemical signatures of metallic contaminants are established.•Cathode contaminants are found to disrupt SEI formation through crossover reactions.•Anode contaminants adversely react with Li & accelerate electrolyte degradation.•Complementary characterization offers powerful tool to selectively identify impurities.</description><subject>Contaminant</subject><subject>Differential electrochemical analysis</subject><subject>Direct recycling</subject><subject>Isothermal microcalorimetry</subject><subject>Lithium-ion battery recycling</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BSneW_PRNM1NWfxYWPCi55BNpzSlbZYku-K_t6Hr2dMMw_u-M_MgdE9wQTCpHvuiP7jv4I6-oJiSgjIsKnyBVqQWLKeC80u0wkzUuRCcXaObEHqMMSECr5DZTu1whMlA5tpshKiHwZrMuCnq0U56iiFzUxY7yGAAE70zHYzW6CHTU5Pmfpz7PXT6ZJ1PITub29lyljcQbtFVq4cAd-e6Rl-vL5-b93z38bbdPO9yw2oRc60r3jZYyrouuTYUmN6zUla8lE3DZckZlRqYqXCJQQIDLmRLWyaB7CnjJVujhyXXhWhVMDaC6eZPpvkQRWpGsUiiahEZ70Lw0KqDt6P2P4pglXiqXv3xVImnWnjOxqfFCPMLJws-bUjgGuvTgsbZ_yJ-AV2Mgzw</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Fink, Kae E.</creator><creator>Polzin, Bryant J.</creator><creator>Vaughey, John T.</creator><creator>Major, Joshua J.</creator><creator>Dunlop, Alison R.</creator><creator>Trask, Stephen E.</creator><creator>Jeka, Gerald T.</creator><creator>Spangenberger, Jeffrey S.</creator><creator>Keyser, Matthew A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9363-4632</orcidid><orcidid>https://orcid.org/0000-0001-9785-0375</orcidid><orcidid>https://orcid.org/0000000197850375</orcidid><orcidid>https://orcid.org/0000000193634632</orcidid></search><sort><creationdate>20220115</creationdate><title>Influence of metallic contaminants on the electrochemical and thermal behavior of Li-ion electrodes</title><author>Fink, Kae E. ; Polzin, Bryant J. ; Vaughey, John T. ; Major, Joshua J. ; Dunlop, Alison R. ; Trask, Stephen E. ; Jeka, Gerald T. ; Spangenberger, Jeffrey S. ; Keyser, Matthew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-aa65fd0998845ac2e3ab3496549dd5945329ae3c6040e9e3e579f2f39e1b23543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Contaminant</topic><topic>Differential electrochemical analysis</topic><topic>Direct recycling</topic><topic>Isothermal microcalorimetry</topic><topic>Lithium-ion battery recycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fink, Kae E.</creatorcontrib><creatorcontrib>Polzin, Bryant J.</creatorcontrib><creatorcontrib>Vaughey, John T.</creatorcontrib><creatorcontrib>Major, Joshua J.</creatorcontrib><creatorcontrib>Dunlop, Alison R.</creatorcontrib><creatorcontrib>Trask, Stephen E.</creatorcontrib><creatorcontrib>Jeka, Gerald T.</creatorcontrib><creatorcontrib>Spangenberger, Jeffrey S.</creatorcontrib><creatorcontrib>Keyser, Matthew A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fink, Kae E.</au><au>Polzin, Bryant J.</au><au>Vaughey, John T.</au><au>Major, Joshua J.</au><au>Dunlop, Alison R.</au><au>Trask, Stephen E.</au><au>Jeka, Gerald T.</au><au>Spangenberger, Jeffrey S.</au><au>Keyser, Matthew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of metallic contaminants on the electrochemical and thermal behavior of Li-ion electrodes</atitle><jtitle>Journal of power sources</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>518</volume><issue>C</issue><spage>230760</spage><pages>230760-</pages><artnum>230760</artnum><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Emerging nondestructive (direct) recycling techniques for lithium-ion batteries may introduce metallic impurities into recycled electrodes. In the present work, the impact of such nonionic contaminants on the practical performance of both anode and cathode materials is evaluated using a synergistic combination of electrochemical and thermal analysis. The impurities under study have been selected through evaluation of industrially shredded batteries, and include Fe0, Al0, Mg0, Cu0, and Si0. The electrochemical behavior of materials containing each individual contaminant at either the anode or the cathode is evaluated in both half-cell and full-cell format. Further, the first-cycle thermal signatures of full cells are used to validate and complement electrochemical signatures, and the two techniques are used in conjunction to suggest distinct mechanisms of electrochemical reactivity for the various impurities. At the anode, metallic contaminants are found to disrupt performance through direct reaction with Li and may serve as weak catalysts to accelerate electrolyte degradation. At the cathode, metallic contaminants show evidence of crossover during formation cycling to disrupt SEI formation. We suggest that coupled electrochemical and thermal analysis may be used to both identify the presence of contaminants and to elucidate specific mechanisms of reactivity for metallic impurities under anodic and cathodic conditions.
•Coupled thermal & electrochemical signatures of metallic contaminants are established.•Cathode contaminants are found to disrupt SEI formation through crossover reactions.•Anode contaminants adversely react with Li & accelerate electrolyte degradation.•Complementary characterization offers powerful tool to selectively identify impurities.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2021.230760</doi><orcidid>https://orcid.org/0000-0001-9363-4632</orcidid><orcidid>https://orcid.org/0000-0001-9785-0375</orcidid><orcidid>https://orcid.org/0000000197850375</orcidid><orcidid>https://orcid.org/0000000193634632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2022-01, Vol.518 (C), p.230760, Article 230760 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_osti_scitechconnect_1832074 |
source | Elsevier ScienceDirect Journals |
subjects | Contaminant Differential electrochemical analysis Direct recycling Isothermal microcalorimetry Lithium-ion battery recycling |
title | Influence of metallic contaminants on the electrochemical and thermal behavior of Li-ion electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20metallic%20contaminants%20on%20the%20electrochemical%20and%20thermal%20behavior%20of%20Li-ion%20electrodes&rft.jtitle=Journal%20of%20power%20sources&rft.au=Fink,%20Kae%20E.&rft.date=2022-01-15&rft.volume=518&rft.issue=C&rft.spage=230760&rft.pages=230760-&rft.artnum=230760&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2021.230760&rft_dat=%3Celsevier_osti_%3ES0378775321012520%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775321012520&rfr_iscdi=true |