Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes
Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binde...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2021-07, Vol.168 (7), p.70536 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 70536 |
container_title | Journal of the Electrochemical Society |
container_volume | 168 |
creator | Mistry, Aashutosh Trask, Stephen Dunlop, Alison Jeka, Gerald Polzin, Bryant Mukherjee, Partha P. Srinivasan, Venkat |
description | Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binder networks and how they affect the electrochemical response. The present study systematically characterizes these effects in terms of effective properties by utilizing macrohomogeneous models to analyze the measured responses for electrodes with different carbon-binder content, electrode thickness, and porosity but with identical materials. We find that the impact of the carbon-binder network is more severe than previously thought. Even for low carbon-binder content (5 %wt. dry electrode), the presence of the network decreases the reaction area and increases the ion transport resistance, negatively impacting electrode performance. These effects scale with not just porosity or active material volume but also with carbon-binder content. The findings underscore the importance of connecting all effective properties to electrode specifications in a full factorial sense to transform the electrode design paradigm. |
doi_str_mv | 10.1149/1945-7111/ac1033 |
format | Article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1831722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesac1033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a5207d106c70fa2f8f3a77e995d2651f716b491e63c21d03b85926a461336ac23</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw5xhxpixO2qY5wjQ-pAmGBOcoS5MtY02mpAPt39OqwI2TZet5LftB6BLIDUAuJiDyIuMAMFEaCGNHaPQ3OkYjQoBleVnAKTpLadO1UOV8hNLrXvnW2YPzK_xsVqp1nwbPrDW6TThYPFVxGXx253xtYke0XyF-JGxjaPBs21Ex6LVpnFZbvDDRhtgor00fXYQY9gnPXfYU_C9cm3SOTqzaJnPxU8fo_X72Nn3M5i8PT9PbeaZZLtpMFZTwGkipObGK2soyxbkRoqhp94jlUC5zAaZkmkJN2LIqBC1VXgJjpdKUjdHVsDek1smkXWv0Wgfvu0MkVAw47SEyQDqGlKKxchddo-JBApG9WdlrlL1GOZjtItdDxIWd3IR99N0X_-PfRKp5ZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes</title><source>IOP Publishing Journals</source><creator>Mistry, Aashutosh ; Trask, Stephen ; Dunlop, Alison ; Jeka, Gerald ; Polzin, Bryant ; Mukherjee, Partha P. ; Srinivasan, Venkat</creator><creatorcontrib>Mistry, Aashutosh ; Trask, Stephen ; Dunlop, Alison ; Jeka, Gerald ; Polzin, Bryant ; Mukherjee, Partha P. ; Srinivasan, Venkat ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binder networks and how they affect the electrochemical response. The present study systematically characterizes these effects in terms of effective properties by utilizing macrohomogeneous models to analyze the measured responses for electrodes with different carbon-binder content, electrode thickness, and porosity but with identical materials. We find that the impact of the carbon-binder network is more severe than previously thought. Even for low carbon-binder content (5 %wt. dry electrode), the presence of the network decreases the reaction area and increases the ion transport resistance, negatively impacting electrode performance. These effects scale with not just porosity or active material volume but also with carbon-binder content. The findings underscore the importance of connecting all effective properties to electrode specifications in a full factorial sense to transform the electrode design paradigm.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ac1033</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>Batteries Li-ion ; carbon-binder phase ; Design ; Electrode Kinetics ; Energy Storage ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; intercalation reaction ; inverse analysis ; ion transport ; pore network ; porous electrode ; property estimation ; surface coverage</subject><ispartof>Journal of the Electrochemical Society, 2021-07, Vol.168 (7), p.70536</ispartof><rights>2021 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a5207d106c70fa2f8f3a77e995d2651f716b491e63c21d03b85926a461336ac23</citedby><cites>FETCH-LOGICAL-c349t-a5207d106c70fa2f8f3a77e995d2651f716b491e63c21d03b85926a461336ac23</cites><orcidid>0000-0002-4359-4975 ; 0000-0002-1248-5952 ; 0000-0001-7900-7261 ; 0000-0002-0879-4779 ; 0000000212485952 ; 0000000243594975 ; 0000000179007261 ; 0000000208794779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ac1033/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1831722$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mistry, Aashutosh</creatorcontrib><creatorcontrib>Trask, Stephen</creatorcontrib><creatorcontrib>Dunlop, Alison</creatorcontrib><creatorcontrib>Jeka, Gerald</creatorcontrib><creatorcontrib>Polzin, Bryant</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes</title><title>Journal of the Electrochemical Society</title><addtitle>JES</addtitle><addtitle>J. Electrochem. Soc</addtitle><description>Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binder networks and how they affect the electrochemical response. The present study systematically characterizes these effects in terms of effective properties by utilizing macrohomogeneous models to analyze the measured responses for electrodes with different carbon-binder content, electrode thickness, and porosity but with identical materials. We find that the impact of the carbon-binder network is more severe than previously thought. Even for low carbon-binder content (5 %wt. dry electrode), the presence of the network decreases the reaction area and increases the ion transport resistance, negatively impacting electrode performance. These effects scale with not just porosity or active material volume but also with carbon-binder content. The findings underscore the importance of connecting all effective properties to electrode specifications in a full factorial sense to transform the electrode design paradigm.</description><subject>Batteries Li-ion</subject><subject>carbon-binder phase</subject><subject>Design</subject><subject>Electrode Kinetics</subject><subject>Energy Storage</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>intercalation reaction</subject><subject>inverse analysis</subject><subject>ion transport</subject><subject>pore network</subject><subject>porous electrode</subject><subject>property estimation</subject><subject>surface coverage</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw5xhxpixO2qY5wjQ-pAmGBOcoS5MtY02mpAPt39OqwI2TZet5LftB6BLIDUAuJiDyIuMAMFEaCGNHaPQ3OkYjQoBleVnAKTpLadO1UOV8hNLrXvnW2YPzK_xsVqp1nwbPrDW6TThYPFVxGXx253xtYke0XyF-JGxjaPBs21Ex6LVpnFZbvDDRhtgor00fXYQY9gnPXfYU_C9cm3SOTqzaJnPxU8fo_X72Nn3M5i8PT9PbeaZZLtpMFZTwGkipObGK2soyxbkRoqhp94jlUC5zAaZkmkJN2LIqBC1VXgJjpdKUjdHVsDek1smkXWv0Wgfvu0MkVAw47SEyQDqGlKKxchddo-JBApG9WdlrlL1GOZjtItdDxIWd3IR99N0X_-PfRKp5ZA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Mistry, Aashutosh</creator><creator>Trask, Stephen</creator><creator>Dunlop, Alison</creator><creator>Jeka, Gerald</creator><creator>Polzin, Bryant</creator><creator>Mukherjee, Partha P.</creator><creator>Srinivasan, Venkat</creator><general>IOP Publishing</general><general>IOP Publishing - The Electrochemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4359-4975</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid><orcidid>https://orcid.org/0000-0002-0879-4779</orcidid><orcidid>https://orcid.org/0000000212485952</orcidid><orcidid>https://orcid.org/0000000243594975</orcidid><orcidid>https://orcid.org/0000000179007261</orcidid><orcidid>https://orcid.org/0000000208794779</orcidid></search><sort><creationdate>20210701</creationdate><title>Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes</title><author>Mistry, Aashutosh ; Trask, Stephen ; Dunlop, Alison ; Jeka, Gerald ; Polzin, Bryant ; Mukherjee, Partha P. ; Srinivasan, Venkat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a5207d106c70fa2f8f3a77e995d2651f716b491e63c21d03b85926a461336ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries Li-ion</topic><topic>carbon-binder phase</topic><topic>Design</topic><topic>Electrode Kinetics</topic><topic>Energy Storage</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>intercalation reaction</topic><topic>inverse analysis</topic><topic>ion transport</topic><topic>pore network</topic><topic>porous electrode</topic><topic>property estimation</topic><topic>surface coverage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mistry, Aashutosh</creatorcontrib><creatorcontrib>Trask, Stephen</creatorcontrib><creatorcontrib>Dunlop, Alison</creatorcontrib><creatorcontrib>Jeka, Gerald</creatorcontrib><creatorcontrib>Polzin, Bryant</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mistry, Aashutosh</au><au>Trask, Stephen</au><au>Dunlop, Alison</au><au>Jeka, Gerald</au><au>Polzin, Bryant</au><au>Mukherjee, Partha P.</au><au>Srinivasan, Venkat</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes</atitle><jtitle>Journal of the Electrochemical Society</jtitle><stitle>JES</stitle><addtitle>J. Electrochem. Soc</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>168</volume><issue>7</issue><spage>70536</spage><pages>70536-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binder networks and how they affect the electrochemical response. The present study systematically characterizes these effects in terms of effective properties by utilizing macrohomogeneous models to analyze the measured responses for electrodes with different carbon-binder content, electrode thickness, and porosity but with identical materials. We find that the impact of the carbon-binder network is more severe than previously thought. Even for low carbon-binder content (5 %wt. dry electrode), the presence of the network decreases the reaction area and increases the ion transport resistance, negatively impacting electrode performance. These effects scale with not just porosity or active material volume but also with carbon-binder content. The findings underscore the importance of connecting all effective properties to electrode specifications in a full factorial sense to transform the electrode design paradigm.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ac1033</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4359-4975</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid><orcidid>https://orcid.org/0000-0002-0879-4779</orcidid><orcidid>https://orcid.org/0000000212485952</orcidid><orcidid>https://orcid.org/0000000243594975</orcidid><orcidid>https://orcid.org/0000000179007261</orcidid><orcidid>https://orcid.org/0000000208794779</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2021-07, Vol.168 (7), p.70536 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_osti_scitechconnect_1831722 |
source | IOP Publishing Journals |
subjects | Batteries Li-ion carbon-binder phase Design Electrode Kinetics Energy Storage INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY intercalation reaction inverse analysis ion transport pore network porous electrode property estimation surface coverage |
title | Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T15%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Negative%20Effects%20of%20Carbon-Binder%20Networks%20from%20Electrochemical%20Performance%20of%20Porous%20Li-Ion%20Electrodes&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Mistry,%20Aashutosh&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-07-01&rft.volume=168&rft.issue=7&rft.spage=70536&rft.pages=70536-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ac1033&rft_dat=%3Ciop_osti_%3Ejesac1033%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |