Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes

Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2021-07, Vol.168 (7), p.70536
Hauptverfasser: Mistry, Aashutosh, Trask, Stephen, Dunlop, Alison, Jeka, Gerald, Polzin, Bryant, Mukherjee, Partha P., Srinivasan, Venkat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 70536
container_title Journal of the Electrochemical Society
container_volume 168
creator Mistry, Aashutosh
Trask, Stephen
Dunlop, Alison
Jeka, Gerald
Polzin, Bryant
Mukherjee, Partha P.
Srinivasan, Venkat
description Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binder networks and how they affect the electrochemical response. The present study systematically characterizes these effects in terms of effective properties by utilizing macrohomogeneous models to analyze the measured responses for electrodes with different carbon-binder content, electrode thickness, and porosity but with identical materials. We find that the impact of the carbon-binder network is more severe than previously thought. Even for low carbon-binder content (5 %wt. dry electrode), the presence of the network decreases the reaction area and increases the ion transport resistance, negatively impacting electrode performance. These effects scale with not just porosity or active material volume but also with carbon-binder content. The findings underscore the importance of connecting all effective properties to electrode specifications in a full factorial sense to transform the electrode design paradigm.
doi_str_mv 10.1149/1945-7111/ac1033
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1831722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jesac1033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a5207d106c70fa2f8f3a77e995d2651f716b491e63c21d03b85926a461336ac23</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw5xhxpixO2qY5wjQ-pAmGBOcoS5MtY02mpAPt39OqwI2TZet5LftB6BLIDUAuJiDyIuMAMFEaCGNHaPQ3OkYjQoBleVnAKTpLadO1UOV8hNLrXvnW2YPzK_xsVqp1nwbPrDW6TThYPFVxGXx253xtYke0XyF-JGxjaPBs21Ex6LVpnFZbvDDRhtgor00fXYQY9gnPXfYU_C9cm3SOTqzaJnPxU8fo_X72Nn3M5i8PT9PbeaZZLtpMFZTwGkipObGK2soyxbkRoqhp94jlUC5zAaZkmkJN2LIqBC1VXgJjpdKUjdHVsDek1smkXWv0Wgfvu0MkVAw47SEyQDqGlKKxchddo-JBApG9WdlrlL1GOZjtItdDxIWd3IR99N0X_-PfRKp5ZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes</title><source>IOP Publishing Journals</source><creator>Mistry, Aashutosh ; Trask, Stephen ; Dunlop, Alison ; Jeka, Gerald ; Polzin, Bryant ; Mukherjee, Partha P. ; Srinivasan, Venkat</creator><creatorcontrib>Mistry, Aashutosh ; Trask, Stephen ; Dunlop, Alison ; Jeka, Gerald ; Polzin, Bryant ; Mukherjee, Partha P. ; Srinivasan, Venkat ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binder networks and how they affect the electrochemical response. The present study systematically characterizes these effects in terms of effective properties by utilizing macrohomogeneous models to analyze the measured responses for electrodes with different carbon-binder content, electrode thickness, and porosity but with identical materials. We find that the impact of the carbon-binder network is more severe than previously thought. Even for low carbon-binder content (5 %wt. dry electrode), the presence of the network decreases the reaction area and increases the ion transport resistance, negatively impacting electrode performance. These effects scale with not just porosity or active material volume but also with carbon-binder content. The findings underscore the importance of connecting all effective properties to electrode specifications in a full factorial sense to transform the electrode design paradigm.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1945-7111/ac1033</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>Batteries Li-ion ; carbon-binder phase ; Design ; Electrode Kinetics ; Energy Storage ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; intercalation reaction ; inverse analysis ; ion transport ; pore network ; porous electrode ; property estimation ; surface coverage</subject><ispartof>Journal of the Electrochemical Society, 2021-07, Vol.168 (7), p.70536</ispartof><rights>2021 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a5207d106c70fa2f8f3a77e995d2651f716b491e63c21d03b85926a461336ac23</citedby><cites>FETCH-LOGICAL-c349t-a5207d106c70fa2f8f3a77e995d2651f716b491e63c21d03b85926a461336ac23</cites><orcidid>0000-0002-4359-4975 ; 0000-0002-1248-5952 ; 0000-0001-7900-7261 ; 0000-0002-0879-4779 ; 0000000212485952 ; 0000000243594975 ; 0000000179007261 ; 0000000208794779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/1945-7111/ac1033/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1831722$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mistry, Aashutosh</creatorcontrib><creatorcontrib>Trask, Stephen</creatorcontrib><creatorcontrib>Dunlop, Alison</creatorcontrib><creatorcontrib>Jeka, Gerald</creatorcontrib><creatorcontrib>Polzin, Bryant</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes</title><title>Journal of the Electrochemical Society</title><addtitle>JES</addtitle><addtitle>J. Electrochem. Soc</addtitle><description>Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binder networks and how they affect the electrochemical response. The present study systematically characterizes these effects in terms of effective properties by utilizing macrohomogeneous models to analyze the measured responses for electrodes with different carbon-binder content, electrode thickness, and porosity but with identical materials. We find that the impact of the carbon-binder network is more severe than previously thought. Even for low carbon-binder content (5 %wt. dry electrode), the presence of the network decreases the reaction area and increases the ion transport resistance, negatively impacting electrode performance. These effects scale with not just porosity or active material volume but also with carbon-binder content. The findings underscore the importance of connecting all effective properties to electrode specifications in a full factorial sense to transform the electrode design paradigm.</description><subject>Batteries Li-ion</subject><subject>carbon-binder phase</subject><subject>Design</subject><subject>Electrode Kinetics</subject><subject>Energy Storage</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>intercalation reaction</subject><subject>inverse analysis</subject><subject>ion transport</subject><subject>pore network</subject><subject>porous electrode</subject><subject>property estimation</subject><subject>surface coverage</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw5xhxpixO2qY5wjQ-pAmGBOcoS5MtY02mpAPt39OqwI2TZet5LftB6BLIDUAuJiDyIuMAMFEaCGNHaPQ3OkYjQoBleVnAKTpLadO1UOV8hNLrXvnW2YPzK_xsVqp1nwbPrDW6TThYPFVxGXx253xtYke0XyF-JGxjaPBs21Ex6LVpnFZbvDDRhtgor00fXYQY9gnPXfYU_C9cm3SOTqzaJnPxU8fo_X72Nn3M5i8PT9PbeaZZLtpMFZTwGkipObGK2soyxbkRoqhp94jlUC5zAaZkmkJN2LIqBC1VXgJjpdKUjdHVsDek1smkXWv0Wgfvu0MkVAw47SEyQDqGlKKxchddo-JBApG9WdlrlL1GOZjtItdDxIWd3IR99N0X_-PfRKp5ZA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Mistry, Aashutosh</creator><creator>Trask, Stephen</creator><creator>Dunlop, Alison</creator><creator>Jeka, Gerald</creator><creator>Polzin, Bryant</creator><creator>Mukherjee, Partha P.</creator><creator>Srinivasan, Venkat</creator><general>IOP Publishing</general><general>IOP Publishing - The Electrochemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4359-4975</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid><orcidid>https://orcid.org/0000-0002-0879-4779</orcidid><orcidid>https://orcid.org/0000000212485952</orcidid><orcidid>https://orcid.org/0000000243594975</orcidid><orcidid>https://orcid.org/0000000179007261</orcidid><orcidid>https://orcid.org/0000000208794779</orcidid></search><sort><creationdate>20210701</creationdate><title>Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes</title><author>Mistry, Aashutosh ; Trask, Stephen ; Dunlop, Alison ; Jeka, Gerald ; Polzin, Bryant ; Mukherjee, Partha P. ; Srinivasan, Venkat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a5207d106c70fa2f8f3a77e995d2651f716b491e63c21d03b85926a461336ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries Li-ion</topic><topic>carbon-binder phase</topic><topic>Design</topic><topic>Electrode Kinetics</topic><topic>Energy Storage</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>intercalation reaction</topic><topic>inverse analysis</topic><topic>ion transport</topic><topic>pore network</topic><topic>porous electrode</topic><topic>property estimation</topic><topic>surface coverage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mistry, Aashutosh</creatorcontrib><creatorcontrib>Trask, Stephen</creatorcontrib><creatorcontrib>Dunlop, Alison</creatorcontrib><creatorcontrib>Jeka, Gerald</creatorcontrib><creatorcontrib>Polzin, Bryant</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mistry, Aashutosh</au><au>Trask, Stephen</au><au>Dunlop, Alison</au><au>Jeka, Gerald</au><au>Polzin, Bryant</au><au>Mukherjee, Partha P.</au><au>Srinivasan, Venkat</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes</atitle><jtitle>Journal of the Electrochemical Society</jtitle><stitle>JES</stitle><addtitle>J. Electrochem. Soc</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>168</volume><issue>7</issue><spage>70536</spage><pages>70536-</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Porous Li-ion electrodes contain active particles, ion transporting electrolyte, and carbon-binder networks. While macrohomogeneous models are often used to predict electrode behavior, accurate predictions remain challenging, owing to the incomplete understanding of the critical role of carbon-binder networks and how they affect the electrochemical response. The present study systematically characterizes these effects in terms of effective properties by utilizing macrohomogeneous models to analyze the measured responses for electrodes with different carbon-binder content, electrode thickness, and porosity but with identical materials. We find that the impact of the carbon-binder network is more severe than previously thought. Even for low carbon-binder content (5 %wt. dry electrode), the presence of the network decreases the reaction area and increases the ion transport resistance, negatively impacting electrode performance. These effects scale with not just porosity or active material volume but also with carbon-binder content. The findings underscore the importance of connecting all effective properties to electrode specifications in a full factorial sense to transform the electrode design paradigm.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1149/1945-7111/ac1033</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4359-4975</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid><orcidid>https://orcid.org/0000-0002-0879-4779</orcidid><orcidid>https://orcid.org/0000000212485952</orcidid><orcidid>https://orcid.org/0000000243594975</orcidid><orcidid>https://orcid.org/0000000179007261</orcidid><orcidid>https://orcid.org/0000000208794779</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2021-07, Vol.168 (7), p.70536
issn 0013-4651
1945-7111
language eng
recordid cdi_osti_scitechconnect_1831722
source IOP Publishing Journals
subjects Batteries Li-ion
carbon-binder phase
Design
Electrode Kinetics
Energy Storage
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
intercalation reaction
inverse analysis
ion transport
pore network
porous electrode
property estimation
surface coverage
title Quantifying Negative Effects of Carbon-Binder Networks from Electrochemical Performance of Porous Li-Ion Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T15%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Negative%20Effects%20of%20Carbon-Binder%20Networks%20from%20Electrochemical%20Performance%20of%20Porous%20Li-Ion%20Electrodes&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Mistry,%20Aashutosh&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-07-01&rft.volume=168&rft.issue=7&rft.spage=70536&rft.pages=70536-&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1945-7111/ac1033&rft_dat=%3Ciop_osti_%3Ejesac1033%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true