Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption

Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2021-09, Vol.36 (18), p.3628-3641
Hauptverfasser: Hsieh, Meng-Ting, Ha, Chan Soo, Xu, Zhenpeng, Kim, Seokpum, Wu, H. Felix, Kunc, Vlastimil, Zheng, Xiaoyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3641
container_issue 18
container_start_page 3628
container_title Journal of materials research
container_volume 36
creator Hsieh, Meng-Ting
Ha, Chan Soo
Xu, Zhenpeng
Kim, Seokpum
Wu, H. Felix
Kunc, Vlastimil
Zheng, Xiaoyu
description Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave absorber and protective devices. In this work, we present bi-material isotropic cubic + octet sandwich plate-lattices composed of carbon fiber-reinforced polymer (stiff) skins and elastomeric (soft) core. This bi-material configuration enhances their energy absorption capability while retaining stretching-dominated behavior. We investigate their mechanical properties through an analytical model and finite element simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 times higher than their homogeneous counterparts while marginally compromising their stiffness and strength. When compared to previously reported materials, these materials achieve superior strength-energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight energy absorbing applications. Graphic Abstract
doi_str_mv 10.1557/s43578-021-00322-2
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1831628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-c498d8896b4585bd6444dae4ef6ed2634a70693c22cf95dd337d031c1091d93c3</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouD7-gKegV6Od10zmKOILFjyo55BNMjtZ1syaRBb_vVlH8Oaluym-KppC6IzCFZWyvc6Cy1YRYJQAcMYI20MzBkIQyVmzj2aglCCso-IQHeW8AqASWjFD5qWEvscmOpxLGuPyEq_Dcihbv5t4Eci7KT4Fs8a5QttgB7xZV4nUUYL1GW9DGbCPg4nWu3r4tPzCZpHHtClhjCfooDfr7E9_9zF6u797vX0k8-eHp9ubObG8g0Ks6JRTqmsWQiq5cI0QwhkvfN94xxouTAtNxy1jtu-kc5y3Dji1FDrqqs6P0fmUO-YSdLaheDvYMUZvi6aK04apCl1M0CaNH58-F70aP1Osf2nWgmIKJIdKsYmyacw5-V5vUng36UtT0Lu-9dS3rn3rn741qyY-mXKF49Knv-h_XN8fUIMr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280530</pqid></control><display><type>article</type><title>Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption</title><source>SpringerNature Journals</source><creator>Hsieh, Meng-Ting ; Ha, Chan Soo ; Xu, Zhenpeng ; Kim, Seokpum ; Wu, H. Felix ; Kunc, Vlastimil ; Zheng, Xiaoyu</creator><creatorcontrib>Hsieh, Meng-Ting ; Ha, Chan Soo ; Xu, Zhenpeng ; Kim, Seokpum ; Wu, H. Felix ; Kunc, Vlastimil ; Zheng, Xiaoyu ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave absorber and protective devices. In this work, we present bi-material isotropic cubic + octet sandwich plate-lattices composed of carbon fiber-reinforced polymer (stiff) skins and elastomeric (soft) core. This bi-material configuration enhances their energy absorption capability while retaining stretching-dominated behavior. We investigate their mechanical properties through an analytical model and finite element simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 times higher than their homogeneous counterparts while marginally compromising their stiffness and strength. When compared to previously reported materials, these materials achieve superior strength-energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight energy absorbing applications. Graphic Abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00322-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>3D printing ; Applied and Technical Physics ; Biomaterials ; Carbon fiber reinforced plastics ; Chemistry and Materials Science ; composite ; Elastomers ; Energy absorption ; Fiber reinforced polymers ; Finite element method ; Inorganic Chemistry ; Isotropic material ; Lattices ; Lightweight ; Materials Engineering ; Materials research ; MATERIALS SCIENCE ; Mechanical properties ; metamaterial ; modeling ; Nanotechnology ; Stiffness ; toughness ; Upper bounds</subject><ispartof>Journal of materials research, 2021-09, Vol.36 (18), p.3628-3641</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2021</rights><rights>The Author(s), under exclusive licence to The Materials Research Society 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-c498d8896b4585bd6444dae4ef6ed2634a70693c22cf95dd337d031c1091d93c3</citedby><cites>FETCH-LOGICAL-c390t-c498d8896b4585bd6444dae4ef6ed2634a70693c22cf95dd337d031c1091d93c3</cites><orcidid>0000-0001-8685-5728 ; 0000000250312585 ; 0000000344057917 ; 0000000186855728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-021-00322-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-021-00322-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1831628$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Meng-Ting</creatorcontrib><creatorcontrib>Ha, Chan Soo</creatorcontrib><creatorcontrib>Xu, Zhenpeng</creatorcontrib><creatorcontrib>Kim, Seokpum</creatorcontrib><creatorcontrib>Wu, H. Felix</creatorcontrib><creatorcontrib>Kunc, Vlastimil</creatorcontrib><creatorcontrib>Zheng, Xiaoyu</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave absorber and protective devices. In this work, we present bi-material isotropic cubic + octet sandwich plate-lattices composed of carbon fiber-reinforced polymer (stiff) skins and elastomeric (soft) core. This bi-material configuration enhances their energy absorption capability while retaining stretching-dominated behavior. We investigate their mechanical properties through an analytical model and finite element simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 times higher than their homogeneous counterparts while marginally compromising their stiffness and strength. When compared to previously reported materials, these materials achieve superior strength-energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight energy absorbing applications. Graphic Abstract</description><subject>3D printing</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Carbon fiber reinforced plastics</subject><subject>Chemistry and Materials Science</subject><subject>composite</subject><subject>Elastomers</subject><subject>Energy absorption</subject><subject>Fiber reinforced polymers</subject><subject>Finite element method</subject><subject>Inorganic Chemistry</subject><subject>Isotropic material</subject><subject>Lattices</subject><subject>Lightweight</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>metamaterial</subject><subject>modeling</subject><subject>Nanotechnology</subject><subject>Stiffness</subject><subject>toughness</subject><subject>Upper bounds</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouD7-gKegV6Od10zmKOILFjyo55BNMjtZ1syaRBb_vVlH8Oaluym-KppC6IzCFZWyvc6Cy1YRYJQAcMYI20MzBkIQyVmzj2aglCCso-IQHeW8AqASWjFD5qWEvscmOpxLGuPyEq_Dcihbv5t4Eci7KT4Fs8a5QttgB7xZV4nUUYL1GW9DGbCPg4nWu3r4tPzCZpHHtClhjCfooDfr7E9_9zF6u797vX0k8-eHp9ubObG8g0Ks6JRTqmsWQiq5cI0QwhkvfN94xxouTAtNxy1jtu-kc5y3Dji1FDrqqs6P0fmUO-YSdLaheDvYMUZvi6aK04apCl1M0CaNH58-F70aP1Osf2nWgmIKJIdKsYmyacw5-V5vUng36UtT0Lu-9dS3rn3rn741qyY-mXKF49Knv-h_XN8fUIMr</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Hsieh, Meng-Ting</creator><creator>Ha, Chan Soo</creator><creator>Xu, Zhenpeng</creator><creator>Kim, Seokpum</creator><creator>Wu, H. Felix</creator><creator>Kunc, Vlastimil</creator><creator>Zheng, Xiaoyu</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Materials Research Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8685-5728</orcidid><orcidid>https://orcid.org/0000000250312585</orcidid><orcidid>https://orcid.org/0000000344057917</orcidid><orcidid>https://orcid.org/0000000186855728</orcidid></search><sort><creationdate>20210928</creationdate><title>Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption</title><author>Hsieh, Meng-Ting ; Ha, Chan Soo ; Xu, Zhenpeng ; Kim, Seokpum ; Wu, H. Felix ; Kunc, Vlastimil ; Zheng, Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-c498d8896b4585bd6444dae4ef6ed2634a70693c22cf95dd337d031c1091d93c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D printing</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Carbon fiber reinforced plastics</topic><topic>Chemistry and Materials Science</topic><topic>composite</topic><topic>Elastomers</topic><topic>Energy absorption</topic><topic>Fiber reinforced polymers</topic><topic>Finite element method</topic><topic>Inorganic Chemistry</topic><topic>Isotropic material</topic><topic>Lattices</topic><topic>Lightweight</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>metamaterial</topic><topic>modeling</topic><topic>Nanotechnology</topic><topic>Stiffness</topic><topic>toughness</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Meng-Ting</creatorcontrib><creatorcontrib>Ha, Chan Soo</creatorcontrib><creatorcontrib>Xu, Zhenpeng</creatorcontrib><creatorcontrib>Kim, Seokpum</creatorcontrib><creatorcontrib>Wu, H. Felix</creatorcontrib><creatorcontrib>Kunc, Vlastimil</creatorcontrib><creatorcontrib>Zheng, Xiaoyu</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Meng-Ting</au><au>Ha, Chan Soo</au><au>Xu, Zhenpeng</au><au>Kim, Seokpum</au><au>Wu, H. Felix</au><au>Kunc, Vlastimil</au><au>Zheng, Xiaoyu</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2021-09-28</date><risdate>2021</risdate><volume>36</volume><issue>18</issue><spage>3628</spage><epage>3641</epage><pages>3628-3641</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave absorber and protective devices. In this work, we present bi-material isotropic cubic + octet sandwich plate-lattices composed of carbon fiber-reinforced polymer (stiff) skins and elastomeric (soft) core. This bi-material configuration enhances their energy absorption capability while retaining stretching-dominated behavior. We investigate their mechanical properties through an analytical model and finite element simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 times higher than their homogeneous counterparts while marginally compromising their stiffness and strength. When compared to previously reported materials, these materials achieve superior strength-energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight energy absorbing applications. Graphic Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00322-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8685-5728</orcidid><orcidid>https://orcid.org/0000000250312585</orcidid><orcidid>https://orcid.org/0000000344057917</orcidid><orcidid>https://orcid.org/0000000186855728</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2021-09, Vol.36 (18), p.3628-3641
issn 0884-2914
2044-5326
language eng
recordid cdi_osti_scitechconnect_1831628
source SpringerNature Journals
subjects 3D printing
Applied and Technical Physics
Biomaterials
Carbon fiber reinforced plastics
Chemistry and Materials Science
composite
Elastomers
Energy absorption
Fiber reinforced polymers
Finite element method
Inorganic Chemistry
Isotropic material
Lattices
Lightweight
Materials Engineering
Materials research
MATERIALS SCIENCE
Mechanical properties
metamaterial
modeling
Nanotechnology
Stiffness
toughness
Upper bounds
title Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiff%20and%20strong,%20lightweight%20bi-material%20sandwich%20plate-lattices%20with%20enhanced%20energy%20absorption&rft.jtitle=Journal%20of%20materials%20research&rft.au=Hsieh,%20Meng-Ting&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-09-28&rft.volume=36&rft.issue=18&rft.spage=3628&rft.epage=3641&rft.pages=3628-3641&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00322-2&rft_dat=%3Cproquest_osti_%3E2708280530%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280530&rft_id=info:pmid/&rfr_iscdi=true