Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption
Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave ab...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2021-09, Vol.36 (18), p.3628-3641 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3641 |
---|---|
container_issue | 18 |
container_start_page | 3628 |
container_title | Journal of materials research |
container_volume | 36 |
creator | Hsieh, Meng-Ting Ha, Chan Soo Xu, Zhenpeng Kim, Seokpum Wu, H. Felix Kunc, Vlastimil Zheng, Xiaoyu |
description | Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave absorber and protective devices. In this work, we present bi-material isotropic cubic + octet sandwich plate-lattices composed of carbon fiber-reinforced polymer (stiff) skins and elastomeric (soft) core. This bi-material configuration enhances their energy absorption capability while retaining stretching-dominated behavior. We investigate their mechanical properties through an analytical model and finite element simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 times higher than their homogeneous counterparts while marginally compromising their stiffness and strength. When compared to previously reported materials, these materials achieve superior strength-energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight energy absorbing applications.
Graphic Abstract |
doi_str_mv | 10.1557/s43578-021-00322-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1831628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-c498d8896b4585bd6444dae4ef6ed2634a70693c22cf95dd337d031c1091d93c3</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouD7-gKegV6Od10zmKOILFjyo55BNMjtZ1syaRBb_vVlH8Oaluym-KppC6IzCFZWyvc6Cy1YRYJQAcMYI20MzBkIQyVmzj2aglCCso-IQHeW8AqASWjFD5qWEvscmOpxLGuPyEq_Dcihbv5t4Eci7KT4Fs8a5QttgB7xZV4nUUYL1GW9DGbCPg4nWu3r4tPzCZpHHtClhjCfooDfr7E9_9zF6u797vX0k8-eHp9ubObG8g0Ks6JRTqmsWQiq5cI0QwhkvfN94xxouTAtNxy1jtu-kc5y3Dji1FDrqqs6P0fmUO-YSdLaheDvYMUZvi6aK04apCl1M0CaNH58-F70aP1Osf2nWgmIKJIdKsYmyacw5-V5vUng36UtT0Lu-9dS3rn3rn741qyY-mXKF49Knv-h_XN8fUIMr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280530</pqid></control><display><type>article</type><title>Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption</title><source>SpringerNature Journals</source><creator>Hsieh, Meng-Ting ; Ha, Chan Soo ; Xu, Zhenpeng ; Kim, Seokpum ; Wu, H. Felix ; Kunc, Vlastimil ; Zheng, Xiaoyu</creator><creatorcontrib>Hsieh, Meng-Ting ; Ha, Chan Soo ; Xu, Zhenpeng ; Kim, Seokpum ; Wu, H. Felix ; Kunc, Vlastimil ; Zheng, Xiaoyu ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave absorber and protective devices. In this work, we present bi-material isotropic cubic + octet sandwich plate-lattices composed of carbon fiber-reinforced polymer (stiff) skins and elastomeric (soft) core. This bi-material configuration enhances their energy absorption capability while retaining stretching-dominated behavior. We investigate their mechanical properties through an analytical model and finite element simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 times higher than their homogeneous counterparts while marginally compromising their stiffness and strength. When compared to previously reported materials, these materials achieve superior strength-energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight energy absorbing applications.
Graphic Abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00322-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>3D printing ; Applied and Technical Physics ; Biomaterials ; Carbon fiber reinforced plastics ; Chemistry and Materials Science ; composite ; Elastomers ; Energy absorption ; Fiber reinforced polymers ; Finite element method ; Inorganic Chemistry ; Isotropic material ; Lattices ; Lightweight ; Materials Engineering ; Materials research ; MATERIALS SCIENCE ; Mechanical properties ; metamaterial ; modeling ; Nanotechnology ; Stiffness ; toughness ; Upper bounds</subject><ispartof>Journal of materials research, 2021-09, Vol.36 (18), p.3628-3641</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2021</rights><rights>The Author(s), under exclusive licence to The Materials Research Society 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-c498d8896b4585bd6444dae4ef6ed2634a70693c22cf95dd337d031c1091d93c3</citedby><cites>FETCH-LOGICAL-c390t-c498d8896b4585bd6444dae4ef6ed2634a70693c22cf95dd337d031c1091d93c3</cites><orcidid>0000-0001-8685-5728 ; 0000000250312585 ; 0000000344057917 ; 0000000186855728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-021-00322-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-021-00322-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1831628$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Meng-Ting</creatorcontrib><creatorcontrib>Ha, Chan Soo</creatorcontrib><creatorcontrib>Xu, Zhenpeng</creatorcontrib><creatorcontrib>Kim, Seokpum</creatorcontrib><creatorcontrib>Wu, H. Felix</creatorcontrib><creatorcontrib>Kunc, Vlastimil</creatorcontrib><creatorcontrib>Zheng, Xiaoyu</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave absorber and protective devices. In this work, we present bi-material isotropic cubic + octet sandwich plate-lattices composed of carbon fiber-reinforced polymer (stiff) skins and elastomeric (soft) core. This bi-material configuration enhances their energy absorption capability while retaining stretching-dominated behavior. We investigate their mechanical properties through an analytical model and finite element simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 times higher than their homogeneous counterparts while marginally compromising their stiffness and strength. When compared to previously reported materials, these materials achieve superior strength-energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight energy absorbing applications.
Graphic Abstract</description><subject>3D printing</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Carbon fiber reinforced plastics</subject><subject>Chemistry and Materials Science</subject><subject>composite</subject><subject>Elastomers</subject><subject>Energy absorption</subject><subject>Fiber reinforced polymers</subject><subject>Finite element method</subject><subject>Inorganic Chemistry</subject><subject>Isotropic material</subject><subject>Lattices</subject><subject>Lightweight</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>metamaterial</subject><subject>modeling</subject><subject>Nanotechnology</subject><subject>Stiffness</subject><subject>toughness</subject><subject>Upper bounds</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouD7-gKegV6Od10zmKOILFjyo55BNMjtZ1syaRBb_vVlH8Oaluym-KppC6IzCFZWyvc6Cy1YRYJQAcMYI20MzBkIQyVmzj2aglCCso-IQHeW8AqASWjFD5qWEvscmOpxLGuPyEq_Dcihbv5t4Eci7KT4Fs8a5QttgB7xZV4nUUYL1GW9DGbCPg4nWu3r4tPzCZpHHtClhjCfooDfr7E9_9zF6u797vX0k8-eHp9ubObG8g0Ks6JRTqmsWQiq5cI0QwhkvfN94xxouTAtNxy1jtu-kc5y3Dji1FDrqqs6P0fmUO-YSdLaheDvYMUZvi6aK04apCl1M0CaNH58-F70aP1Osf2nWgmIKJIdKsYmyacw5-V5vUng36UtT0Lu-9dS3rn3rn741qyY-mXKF49Knv-h_XN8fUIMr</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Hsieh, Meng-Ting</creator><creator>Ha, Chan Soo</creator><creator>Xu, Zhenpeng</creator><creator>Kim, Seokpum</creator><creator>Wu, H. Felix</creator><creator>Kunc, Vlastimil</creator><creator>Zheng, Xiaoyu</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Materials Research Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8685-5728</orcidid><orcidid>https://orcid.org/0000000250312585</orcidid><orcidid>https://orcid.org/0000000344057917</orcidid><orcidid>https://orcid.org/0000000186855728</orcidid></search><sort><creationdate>20210928</creationdate><title>Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption</title><author>Hsieh, Meng-Ting ; Ha, Chan Soo ; Xu, Zhenpeng ; Kim, Seokpum ; Wu, H. Felix ; Kunc, Vlastimil ; Zheng, Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-c498d8896b4585bd6444dae4ef6ed2634a70693c22cf95dd337d031c1091d93c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D printing</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Carbon fiber reinforced plastics</topic><topic>Chemistry and Materials Science</topic><topic>composite</topic><topic>Elastomers</topic><topic>Energy absorption</topic><topic>Fiber reinforced polymers</topic><topic>Finite element method</topic><topic>Inorganic Chemistry</topic><topic>Isotropic material</topic><topic>Lattices</topic><topic>Lightweight</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>metamaterial</topic><topic>modeling</topic><topic>Nanotechnology</topic><topic>Stiffness</topic><topic>toughness</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Meng-Ting</creatorcontrib><creatorcontrib>Ha, Chan Soo</creatorcontrib><creatorcontrib>Xu, Zhenpeng</creatorcontrib><creatorcontrib>Kim, Seokpum</creatorcontrib><creatorcontrib>Wu, H. Felix</creatorcontrib><creatorcontrib>Kunc, Vlastimil</creatorcontrib><creatorcontrib>Zheng, Xiaoyu</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Meng-Ting</au><au>Ha, Chan Soo</au><au>Xu, Zhenpeng</au><au>Kim, Seokpum</au><au>Wu, H. Felix</au><au>Kunc, Vlastimil</au><au>Zheng, Xiaoyu</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2021-09-28</date><risdate>2021</risdate><volume>36</volume><issue>18</issue><spage>3628</spage><epage>3641</epage><pages>3628-3641</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Plate-based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on stiffness and strength. However, simultaneously attaining high energy absorption in these plate-lattices still remains elusive, which is critical for many structural applications such as shock wave absorber and protective devices. In this work, we present bi-material isotropic cubic + octet sandwich plate-lattices composed of carbon fiber-reinforced polymer (stiff) skins and elastomeric (soft) core. This bi-material configuration enhances their energy absorption capability while retaining stretching-dominated behavior. We investigate their mechanical properties through an analytical model and finite element simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 times higher than their homogeneous counterparts while marginally compromising their stiffness and strength. When compared to previously reported materials, these materials achieve superior strength-energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight energy absorbing applications.
Graphic Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00322-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8685-5728</orcidid><orcidid>https://orcid.org/0000000250312585</orcidid><orcidid>https://orcid.org/0000000344057917</orcidid><orcidid>https://orcid.org/0000000186855728</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2021-09, Vol.36 (18), p.3628-3641 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_osti_scitechconnect_1831628 |
source | SpringerNature Journals |
subjects | 3D printing Applied and Technical Physics Biomaterials Carbon fiber reinforced plastics Chemistry and Materials Science composite Elastomers Energy absorption Fiber reinforced polymers Finite element method Inorganic Chemistry Isotropic material Lattices Lightweight Materials Engineering Materials research MATERIALS SCIENCE Mechanical properties metamaterial modeling Nanotechnology Stiffness toughness Upper bounds |
title | Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiff%20and%20strong,%20lightweight%20bi-material%20sandwich%20plate-lattices%20with%20enhanced%20energy%20absorption&rft.jtitle=Journal%20of%20materials%20research&rft.au=Hsieh,%20Meng-Ting&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2021-09-28&rft.volume=36&rft.issue=18&rft.spage=3628&rft.epage=3641&rft.pages=3628-3641&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00322-2&rft_dat=%3Cproquest_osti_%3E2708280530%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280530&rft_id=info:pmid/&rfr_iscdi=true |