Nuclear spin conservation enables state-to-state control of ultracold molecular reactions
Quantum-state control of reactive systems has enabled microscopic probes of underlying interaction potentials and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. Here, we realize this goal by u...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-05, Vol.13 (5), p.435-440 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 5 |
container_start_page | 435 |
container_title | Nature chemistry |
container_volume | 13 |
creator | Hu, Ming-Guang Liu, Yu Nichols, Matthew A. Zhu, Lingbang Quéméner, Goulven Dulieu, Olivier Ni, Kang-Kuen |
description | Quantum-state control of reactive systems has enabled microscopic probes of underlying interaction potentials and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. Here, we realize this goal by utilizing the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules we find that the system retains a near-perfect memory of the reactants’ nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a reaction with quantum-state resolution. The techniques demonstrated here open up the possibilities to study quantum entanglement between reaction products and ultracold reaction dynamics at the state-to-state level.
Energy scrambling in intermediate complexes—which form in many chemical reactions—presents a major challenge to state-to-state control. However, nuclear spin tends to remain unchanged throughout reactions and now, by manipulating the reactants’ nuclear spins using an external magnetic field, control over the product state distribution of a bimolecular reaction has been demonstrated. |
doi_str_mv | 10.1038/s41557-020-00610-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1830706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521265569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-8918710a0bc007429acf4307be0fbc65a1e3521ff93dd251a7ee153967e31a9b3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0Eog_4AyxQBJuyCFy_42VVtRRp1G5gwcpyPDc0lScebKcS_x6nKYPEgo19ZX_n-FiHkDcUPlLg3acsqJS6BQYtgKJ1fUaOqZayFVyY54eZwxE5yfm-QpJT9ZIccc470IIfk-83sw_oUpP349T4OGVMD66McWpwcn3A3OTiCrYlto_DwpQUQxOHZg4lOR_DttnFgH4O1Seh84s8vyIvBhcyvn7aT8m3q8uvF9ft5vbzl4vzTesl1aXtDO00BQe9hxqJGecHwUH3CEPvlXQUuWR0GAzfbpmkTiNSyY3SyKkzPT8l71bfmMtosx8L-rsackJfLO2qFagKfVihOxfsPo07l37Z6EZ7fb6xyxkwRY0C8UAre7ay-xR_zpiL3Y3ZYwhuwjhny4QWQmnDTUXf_4PexzlN9buW1dBMSakWiq2UTzHnhMMhAQW7NGnXJmsIsI9NWqiit0_Wc7_D7UHyp7oK8BXI9Wr6genv2_-x_Q22_Kds</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521265569</pqid></control><display><type>article</type><title>Nuclear spin conservation enables state-to-state control of ultracold molecular reactions</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Hu, Ming-Guang ; Liu, Yu ; Nichols, Matthew A. ; Zhu, Lingbang ; Quéméner, Goulven ; Dulieu, Olivier ; Ni, Kang-Kuen</creator><creatorcontrib>Hu, Ming-Guang ; Liu, Yu ; Nichols, Matthew A. ; Zhu, Lingbang ; Quéméner, Goulven ; Dulieu, Olivier ; Ni, Kang-Kuen ; Harvard Univ., Cambridge, MA (United States)</creatorcontrib><description>Quantum-state control of reactive systems has enabled microscopic probes of underlying interaction potentials and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. Here, we realize this goal by utilizing the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules we find that the system retains a near-perfect memory of the reactants’ nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a reaction with quantum-state resolution. The techniques demonstrated here open up the possibilities to study quantum entanglement between reaction products and ultracold reaction dynamics at the state-to-state level.
Energy scrambling in intermediate complexes—which form in many chemical reactions—presents a major challenge to state-to-state control. However, nuclear spin tends to remain unchanged throughout reactions and now, by manipulating the reactants’ nuclear spins using an external magnetic field, control over the product state distribution of a bimolecular reaction has been demonstrated.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-00610-0</identifier><identifier>PMID: 33380743</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/440/94 ; 639/638/440/950 ; Analytical Chemistry ; Biochemistry ; Chemical reactions ; Chemical Sciences ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Condensed Matter ; Conservation ; Inorganic Chemistry ; Ionization ; Magnetic fields ; Nuclear spin ; or physical chemistry ; Organic Chemistry ; Physical Chemistry ; Physics ; Quantum entanglement ; Quantum Gases ; Quantum mechanics ; Quantum Physics ; Quantum statistics ; RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY ; Reaction products ; Rotational states ; Spectroscopy ; Stability ; Theoretical and</subject><ispartof>Nature chemistry, 2021-05, Vol.13 (5), p.435-440</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-8918710a0bc007429acf4307be0fbc65a1e3521ff93dd251a7ee153967e31a9b3</citedby><cites>FETCH-LOGICAL-c517t-8918710a0bc007429acf4307be0fbc65a1e3521ff93dd251a7ee153967e31a9b3</cites><orcidid>0000-0002-6686-0252 ; 0000-0002-0537-0719 ; 0000-0002-7728-7500 ; 0000-0002-5228-1997 ; 0000-0001-9396-7701 ; 0000-0001-9498-3754 ; 0000000277287500 ; 0000000252281997 ; 0000000193967701 ; 0000000266860252 ; 0000000205370719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-020-00610-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-020-00610-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33380743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02619604$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1830706$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Ming-Guang</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Nichols, Matthew A.</creatorcontrib><creatorcontrib>Zhu, Lingbang</creatorcontrib><creatorcontrib>Quéméner, Goulven</creatorcontrib><creatorcontrib>Dulieu, Olivier</creatorcontrib><creatorcontrib>Ni, Kang-Kuen</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><title>Nuclear spin conservation enables state-to-state control of ultracold molecular reactions</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Quantum-state control of reactive systems has enabled microscopic probes of underlying interaction potentials and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. Here, we realize this goal by utilizing the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules we find that the system retains a near-perfect memory of the reactants’ nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a reaction with quantum-state resolution. The techniques demonstrated here open up the possibilities to study quantum entanglement between reaction products and ultracold reaction dynamics at the state-to-state level.
Energy scrambling in intermediate complexes—which form in many chemical reactions—presents a major challenge to state-to-state control. However, nuclear spin tends to remain unchanged throughout reactions and now, by manipulating the reactants’ nuclear spins using an external magnetic field, control over the product state distribution of a bimolecular reaction has been demonstrated.</description><subject>639/638/440/94</subject><subject>639/638/440/950</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Chemical reactions</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Condensed Matter</subject><subject>Conservation</subject><subject>Inorganic Chemistry</subject><subject>Ionization</subject><subject>Magnetic fields</subject><subject>Nuclear spin</subject><subject>or physical chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Quantum entanglement</subject><subject>Quantum Gases</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Quantum statistics</subject><subject>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</subject><subject>Reaction products</subject><subject>Rotational states</subject><subject>Spectroscopy</subject><subject>Stability</subject><subject>Theoretical and</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtv1DAUhS0Eog_4AyxQBJuyCFy_42VVtRRp1G5gwcpyPDc0lScebKcS_x6nKYPEgo19ZX_n-FiHkDcUPlLg3acsqJS6BQYtgKJ1fUaOqZayFVyY54eZwxE5yfm-QpJT9ZIccc470IIfk-83sw_oUpP349T4OGVMD66McWpwcn3A3OTiCrYlto_DwpQUQxOHZg4lOR_DttnFgH4O1Seh84s8vyIvBhcyvn7aT8m3q8uvF9ft5vbzl4vzTesl1aXtDO00BQe9hxqJGecHwUH3CEPvlXQUuWR0GAzfbpmkTiNSyY3SyKkzPT8l71bfmMtosx8L-rsackJfLO2qFagKfVihOxfsPo07l37Z6EZ7fb6xyxkwRY0C8UAre7ay-xR_zpiL3Y3ZYwhuwjhny4QWQmnDTUXf_4PexzlN9buW1dBMSakWiq2UTzHnhMMhAQW7NGnXJmsIsI9NWqiit0_Wc7_D7UHyp7oK8BXI9Wr6genv2_-x_Q22_Kds</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Hu, Ming-Guang</creator><creator>Liu, Yu</creator><creator>Nichols, Matthew A.</creator><creator>Zhu, Lingbang</creator><creator>Quéméner, Goulven</creator><creator>Dulieu, Olivier</creator><creator>Ni, Kang-Kuen</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6686-0252</orcidid><orcidid>https://orcid.org/0000-0002-0537-0719</orcidid><orcidid>https://orcid.org/0000-0002-7728-7500</orcidid><orcidid>https://orcid.org/0000-0002-5228-1997</orcidid><orcidid>https://orcid.org/0000-0001-9396-7701</orcidid><orcidid>https://orcid.org/0000-0001-9498-3754</orcidid><orcidid>https://orcid.org/0000000277287500</orcidid><orcidid>https://orcid.org/0000000252281997</orcidid><orcidid>https://orcid.org/0000000193967701</orcidid><orcidid>https://orcid.org/0000000266860252</orcidid><orcidid>https://orcid.org/0000000205370719</orcidid></search><sort><creationdate>20210501</creationdate><title>Nuclear spin conservation enables state-to-state control of ultracold molecular reactions</title><author>Hu, Ming-Guang ; Liu, Yu ; Nichols, Matthew A. ; Zhu, Lingbang ; Quéméner, Goulven ; Dulieu, Olivier ; Ni, Kang-Kuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-8918710a0bc007429acf4307be0fbc65a1e3521ff93dd251a7ee153967e31a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/440/94</topic><topic>639/638/440/950</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Chemical reactions</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Condensed Matter</topic><topic>Conservation</topic><topic>Inorganic Chemistry</topic><topic>Ionization</topic><topic>Magnetic fields</topic><topic>Nuclear spin</topic><topic>or physical chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Quantum entanglement</topic><topic>Quantum Gases</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Quantum statistics</topic><topic>RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY</topic><topic>Reaction products</topic><topic>Rotational states</topic><topic>Spectroscopy</topic><topic>Stability</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Ming-Guang</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Nichols, Matthew A.</creatorcontrib><creatorcontrib>Zhu, Lingbang</creatorcontrib><creatorcontrib>Quéméner, Goulven</creatorcontrib><creatorcontrib>Dulieu, Olivier</creatorcontrib><creatorcontrib>Ni, Kang-Kuen</creatorcontrib><creatorcontrib>Harvard Univ., Cambridge, MA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Ming-Guang</au><au>Liu, Yu</au><au>Nichols, Matthew A.</au><au>Zhu, Lingbang</au><au>Quéméner, Goulven</au><au>Dulieu, Olivier</au><au>Ni, Kang-Kuen</au><aucorp>Harvard Univ., Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear spin conservation enables state-to-state control of ultracold molecular reactions</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>13</volume><issue>5</issue><spage>435</spage><epage>440</epage><pages>435-440</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Quantum-state control of reactive systems has enabled microscopic probes of underlying interaction potentials and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. Here, we realize this goal by utilizing the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules we find that the system retains a near-perfect memory of the reactants’ nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a reaction with quantum-state resolution. The techniques demonstrated here open up the possibilities to study quantum entanglement between reaction products and ultracold reaction dynamics at the state-to-state level.
Energy scrambling in intermediate complexes—which form in many chemical reactions—presents a major challenge to state-to-state control. However, nuclear spin tends to remain unchanged throughout reactions and now, by manipulating the reactants’ nuclear spins using an external magnetic field, control over the product state distribution of a bimolecular reaction has been demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33380743</pmid><doi>10.1038/s41557-020-00610-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6686-0252</orcidid><orcidid>https://orcid.org/0000-0002-0537-0719</orcidid><orcidid>https://orcid.org/0000-0002-7728-7500</orcidid><orcidid>https://orcid.org/0000-0002-5228-1997</orcidid><orcidid>https://orcid.org/0000-0001-9396-7701</orcidid><orcidid>https://orcid.org/0000-0001-9498-3754</orcidid><orcidid>https://orcid.org/0000000277287500</orcidid><orcidid>https://orcid.org/0000000252281997</orcidid><orcidid>https://orcid.org/0000000193967701</orcidid><orcidid>https://orcid.org/0000000266860252</orcidid><orcidid>https://orcid.org/0000000205370719</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2021-05, Vol.13 (5), p.435-440 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_osti_scitechconnect_1830706 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/638/440/94 639/638/440/950 Analytical Chemistry Biochemistry Chemical reactions Chemical Sciences Chemistry Chemistry and Materials Science Chemistry/Food Science Condensed Matter Conservation Inorganic Chemistry Ionization Magnetic fields Nuclear spin or physical chemistry Organic Chemistry Physical Chemistry Physics Quantum entanglement Quantum Gases Quantum mechanics Quantum Physics Quantum statistics RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY Reaction products Rotational states Spectroscopy Stability Theoretical and |
title | Nuclear spin conservation enables state-to-state control of ultracold molecular reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20spin%20conservation%20enables%20state-to-state%20control%20of%20ultracold%20molecular%20reactions&rft.jtitle=Nature%20chemistry&rft.au=Hu,%20Ming-Guang&rft.aucorp=Harvard%20Univ.,%20Cambridge,%20MA%20(United%20States)&rft.date=2021-05-01&rft.volume=13&rft.issue=5&rft.spage=435&rft.epage=440&rft.pages=435-440&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-00610-0&rft_dat=%3Cproquest_osti_%3E2521265569%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521265569&rft_id=info:pmid/33380743&rfr_iscdi=true |