Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment
Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate for...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Biogeosciences 2021-11, Vol.126 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of geophysical research. Biogeosciences |
container_volume | 126 |
creator | Wilson, Rachel M. Griffiths, Natalie A. Visser, Ate McFarlane, Karis J. Sebestyen, Stephen D. Oleheiser, Keith C. Bosman, Samantha Hopple, Anya M. Tfaily, Malak M. Kolka, Randall K. Hanson, Paul J. Kostka, Joel E. Bridgham, Scott D. Keller, Jason K. Chanton, Jeffrey P. |
description | Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m‐deep in a peat bog over a 7‐year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7‐year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass‐balance model revealed increases in peat‐supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland‐climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source.
Plain Language Summary
Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large‐scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at w |
doi_str_mv | 10.1029/2021JG006511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1829752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600969715</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3955-27afdb0b41cf421dbdfdb55e0d8b5083be8c8ce623290f8f53abcb53697008423</originalsourceid><addsrcrecordid>eNp90E1PAjEQBuCN0USC3PwBjV5F-0GX7pEQRAiJSjAcm253VkqgxbZE999bssZ4spd2Ok8mmTfLrgm-J5gWDxRTMp9inHNCzrIOJXnRF0VOzn_fnF1mvRC2OB2RvgjpZHGpKuO08qWzaGTVrgkQ0OtR2WjqBr2AimjcdhcunHprEzdoZrUHFYx9RyvYH8CrePSAjEUKrTduB2iiXWhChD1aK78_wclXcmYPNl5lF7XaBej93N3s7XGyGj_1F8_T2Xi06CtWcN6nQ1VXJS4HRNcDSqqySiXngCtRcixYCUILDTlltMC1qDlTpS45y4thWnBAWTe7aee6EI0M2kTQG-2sBR0lEbQY8hO6bdHBu48jhCi37uhTEkHSHOMiTSM8qbtWaZ9i8FDLQ9pF-UYSLE_5y7_5J85a_ml20Pxr5Xy6nFKKBWffN82Gyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600969715</pqid></control><display><type>article</type><title>Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment</title><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Wilson, Rachel M. ; Griffiths, Natalie A. ; Visser, Ate ; McFarlane, Karis J. ; Sebestyen, Stephen D. ; Oleheiser, Keith C. ; Bosman, Samantha ; Hopple, Anya M. ; Tfaily, Malak M. ; Kolka, Randall K. ; Hanson, Paul J. ; Kostka, Joel E. ; Bridgham, Scott D. ; Keller, Jason K. ; Chanton, Jeffrey P.</creator><creatorcontrib>Wilson, Rachel M. ; Griffiths, Natalie A. ; Visser, Ate ; McFarlane, Karis J. ; Sebestyen, Stephen D. ; Oleheiser, Keith C. ; Bosman, Samantha ; Hopple, Anya M. ; Tfaily, Malak M. ; Kolka, Randall K. ; Hanson, Paul J. ; Kostka, Joel E. ; Bridgham, Scott D. ; Keller, Jason K. ; Chanton, Jeffrey P. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m‐deep in a peat bog over a 7‐year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7‐year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass‐balance model revealed increases in peat‐supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland‐climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source.
Plain Language Summary
Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large‐scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at warmer temperatures more of the ancient peat carbon is being mobilized and respired to CO2. This is troubling as it signifies a positive feedback loop wherein warming stimulates peat to produce more CO2 which further exacerbates climate change.
Key Points
Radiocarbon mass balance demonstrates the loss of peat carbon in a peatland ecosystem warming experiment
Peat carbon losses increased with warming treatment
Tritium‐based analyses calculate approximately 30 cm y−1 downward advection of porewater through the top 1 m of peat</description><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1029/2021JG006511</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmosphere ; Biodegradation ; Bogs ; Carbon 14 ; Carbon dioxide ; carbon loss ; Changing environments ; Climate change ; Destabilization ; Dissolved inorganic carbon ; Dissolved organic carbon ; Ecosystems ; Emission measurements ; Emissions ; Enclosures ; Environmental changes ; ENVIRONMENTAL SCIENCES ; Feedback loops ; GEOSCIENCES ; Glacial periods ; Global warming ; Ice ages ; Mass balance ; Methane ; Microorganisms ; Peat ; Peatlands ; Positive feedback ; Radiative forcing ; radiocarbon ; Radiocarbon dating ; Reservoirs ; Respiration ; Solid phases ; Substrates</subject><ispartof>Journal of geophysical research. Biogeosciences, 2021-11, Vol.126 (11), p.n/a</ispartof><rights>2021 The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3955-27afdb0b41cf421dbdfdb55e0d8b5083be8c8ce623290f8f53abcb53697008423</citedby><cites>FETCH-LOGICAL-a3955-27afdb0b41cf421dbdfdb55e0d8b5083be8c8ce623290f8f53abcb53697008423</cites><orcidid>0000-0002-3303-9708 ; 0000-0003-4048-4540 ; 0000-0002-6419-8218 ; 0000-0001-7293-3561 ; 0000-0001-6390-7863 ; 0000-0003-0068-7714 ; 0000-0002-3036-2833 ; 0000-0002-5770-9614 ; 0000000233039708 ; 0000000264198218 ; 0000000300687714 ; 0000000230362833 ; 0000000257709614 ; 0000000163907863 ; 0000000172933561 ; 0000000340484540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JG006511$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JG006511$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1829752$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Rachel M.</creatorcontrib><creatorcontrib>Griffiths, Natalie A.</creatorcontrib><creatorcontrib>Visser, Ate</creatorcontrib><creatorcontrib>McFarlane, Karis J.</creatorcontrib><creatorcontrib>Sebestyen, Stephen D.</creatorcontrib><creatorcontrib>Oleheiser, Keith C.</creatorcontrib><creatorcontrib>Bosman, Samantha</creatorcontrib><creatorcontrib>Hopple, Anya M.</creatorcontrib><creatorcontrib>Tfaily, Malak M.</creatorcontrib><creatorcontrib>Kolka, Randall K.</creatorcontrib><creatorcontrib>Hanson, Paul J.</creatorcontrib><creatorcontrib>Kostka, Joel E.</creatorcontrib><creatorcontrib>Bridgham, Scott D.</creatorcontrib><creatorcontrib>Keller, Jason K.</creatorcontrib><creatorcontrib>Chanton, Jeffrey P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment</title><title>Journal of geophysical research. Biogeosciences</title><description>Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m‐deep in a peat bog over a 7‐year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7‐year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass‐balance model revealed increases in peat‐supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland‐climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source.
Plain Language Summary
Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large‐scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at warmer temperatures more of the ancient peat carbon is being mobilized and respired to CO2. This is troubling as it signifies a positive feedback loop wherein warming stimulates peat to produce more CO2 which further exacerbates climate change.
Key Points
Radiocarbon mass balance demonstrates the loss of peat carbon in a peatland ecosystem warming experiment
Peat carbon losses increased with warming treatment
Tritium‐based analyses calculate approximately 30 cm y−1 downward advection of porewater through the top 1 m of peat</description><subject>Atmosphere</subject><subject>Biodegradation</subject><subject>Bogs</subject><subject>Carbon 14</subject><subject>Carbon dioxide</subject><subject>carbon loss</subject><subject>Changing environments</subject><subject>Climate change</subject><subject>Destabilization</subject><subject>Dissolved inorganic carbon</subject><subject>Dissolved organic carbon</subject><subject>Ecosystems</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Enclosures</subject><subject>Environmental changes</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Feedback loops</subject><subject>GEOSCIENCES</subject><subject>Glacial periods</subject><subject>Global warming</subject><subject>Ice ages</subject><subject>Mass balance</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Peat</subject><subject>Peatlands</subject><subject>Positive feedback</subject><subject>Radiative forcing</subject><subject>radiocarbon</subject><subject>Radiocarbon dating</subject><subject>Reservoirs</subject><subject>Respiration</subject><subject>Solid phases</subject><subject>Substrates</subject><issn>2169-8953</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90E1PAjEQBuCN0USC3PwBjV5F-0GX7pEQRAiJSjAcm253VkqgxbZE999bssZ4spd2Ok8mmTfLrgm-J5gWDxRTMp9inHNCzrIOJXnRF0VOzn_fnF1mvRC2OB2RvgjpZHGpKuO08qWzaGTVrgkQ0OtR2WjqBr2AimjcdhcunHprEzdoZrUHFYx9RyvYH8CrePSAjEUKrTduB2iiXWhChD1aK78_wclXcmYPNl5lF7XaBej93N3s7XGyGj_1F8_T2Xi06CtWcN6nQ1VXJS4HRNcDSqqySiXngCtRcixYCUILDTlltMC1qDlTpS45y4thWnBAWTe7aee6EI0M2kTQG-2sBR0lEbQY8hO6bdHBu48jhCi37uhTEkHSHOMiTSM8qbtWaZ9i8FDLQ9pF-UYSLE_5y7_5J85a_ml20Pxr5Xy6nFKKBWffN82Gyg</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Wilson, Rachel M.</creator><creator>Griffiths, Natalie A.</creator><creator>Visser, Ate</creator><creator>McFarlane, Karis J.</creator><creator>Sebestyen, Stephen D.</creator><creator>Oleheiser, Keith C.</creator><creator>Bosman, Samantha</creator><creator>Hopple, Anya M.</creator><creator>Tfaily, Malak M.</creator><creator>Kolka, Randall K.</creator><creator>Hanson, Paul J.</creator><creator>Kostka, Joel E.</creator><creator>Bridgham, Scott D.</creator><creator>Keller, Jason K.</creator><creator>Chanton, Jeffrey P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3303-9708</orcidid><orcidid>https://orcid.org/0000-0003-4048-4540</orcidid><orcidid>https://orcid.org/0000-0002-6419-8218</orcidid><orcidid>https://orcid.org/0000-0001-7293-3561</orcidid><orcidid>https://orcid.org/0000-0001-6390-7863</orcidid><orcidid>https://orcid.org/0000-0003-0068-7714</orcidid><orcidid>https://orcid.org/0000-0002-3036-2833</orcidid><orcidid>https://orcid.org/0000-0002-5770-9614</orcidid><orcidid>https://orcid.org/0000000233039708</orcidid><orcidid>https://orcid.org/0000000264198218</orcidid><orcidid>https://orcid.org/0000000300687714</orcidid><orcidid>https://orcid.org/0000000230362833</orcidid><orcidid>https://orcid.org/0000000257709614</orcidid><orcidid>https://orcid.org/0000000163907863</orcidid><orcidid>https://orcid.org/0000000172933561</orcidid><orcidid>https://orcid.org/0000000340484540</orcidid></search><sort><creationdate>202111</creationdate><title>Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment</title><author>Wilson, Rachel M. ; Griffiths, Natalie A. ; Visser, Ate ; McFarlane, Karis J. ; Sebestyen, Stephen D. ; Oleheiser, Keith C. ; Bosman, Samantha ; Hopple, Anya M. ; Tfaily, Malak M. ; Kolka, Randall K. ; Hanson, Paul J. ; Kostka, Joel E. ; Bridgham, Scott D. ; Keller, Jason K. ; Chanton, Jeffrey P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3955-27afdb0b41cf421dbdfdb55e0d8b5083be8c8ce623290f8f53abcb53697008423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmosphere</topic><topic>Biodegradation</topic><topic>Bogs</topic><topic>Carbon 14</topic><topic>Carbon dioxide</topic><topic>carbon loss</topic><topic>Changing environments</topic><topic>Climate change</topic><topic>Destabilization</topic><topic>Dissolved inorganic carbon</topic><topic>Dissolved organic carbon</topic><topic>Ecosystems</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Enclosures</topic><topic>Environmental changes</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Feedback loops</topic><topic>GEOSCIENCES</topic><topic>Glacial periods</topic><topic>Global warming</topic><topic>Ice ages</topic><topic>Mass balance</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Peat</topic><topic>Peatlands</topic><topic>Positive feedback</topic><topic>Radiative forcing</topic><topic>radiocarbon</topic><topic>Radiocarbon dating</topic><topic>Reservoirs</topic><topic>Respiration</topic><topic>Solid phases</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Rachel M.</creatorcontrib><creatorcontrib>Griffiths, Natalie A.</creatorcontrib><creatorcontrib>Visser, Ate</creatorcontrib><creatorcontrib>McFarlane, Karis J.</creatorcontrib><creatorcontrib>Sebestyen, Stephen D.</creatorcontrib><creatorcontrib>Oleheiser, Keith C.</creatorcontrib><creatorcontrib>Bosman, Samantha</creatorcontrib><creatorcontrib>Hopple, Anya M.</creatorcontrib><creatorcontrib>Tfaily, Malak M.</creatorcontrib><creatorcontrib>Kolka, Randall K.</creatorcontrib><creatorcontrib>Hanson, Paul J.</creatorcontrib><creatorcontrib>Kostka, Joel E.</creatorcontrib><creatorcontrib>Bridgham, Scott D.</creatorcontrib><creatorcontrib>Keller, Jason K.</creatorcontrib><creatorcontrib>Chanton, Jeffrey P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Rachel M.</au><au>Griffiths, Natalie A.</au><au>Visser, Ate</au><au>McFarlane, Karis J.</au><au>Sebestyen, Stephen D.</au><au>Oleheiser, Keith C.</au><au>Bosman, Samantha</au><au>Hopple, Anya M.</au><au>Tfaily, Malak M.</au><au>Kolka, Randall K.</au><au>Hanson, Paul J.</au><au>Kostka, Joel E.</au><au>Bridgham, Scott D.</au><au>Keller, Jason K.</au><au>Chanton, Jeffrey P.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment</atitle><jtitle>Journal of geophysical research. Biogeosciences</jtitle><date>2021-11</date><risdate>2021</risdate><volume>126</volume><issue>11</issue><epage>n/a</epage><issn>2169-8953</issn><eissn>2169-8961</eissn><abstract>Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m‐deep in a peat bog over a 7‐year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7‐year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass‐balance model revealed increases in peat‐supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland‐climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source.
Plain Language Summary
Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large‐scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at warmer temperatures more of the ancient peat carbon is being mobilized and respired to CO2. This is troubling as it signifies a positive feedback loop wherein warming stimulates peat to produce more CO2 which further exacerbates climate change.
Key Points
Radiocarbon mass balance demonstrates the loss of peat carbon in a peatland ecosystem warming experiment
Peat carbon losses increased with warming treatment
Tritium‐based analyses calculate approximately 30 cm y−1 downward advection of porewater through the top 1 m of peat</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021JG006511</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3303-9708</orcidid><orcidid>https://orcid.org/0000-0003-4048-4540</orcidid><orcidid>https://orcid.org/0000-0002-6419-8218</orcidid><orcidid>https://orcid.org/0000-0001-7293-3561</orcidid><orcidid>https://orcid.org/0000-0001-6390-7863</orcidid><orcidid>https://orcid.org/0000-0003-0068-7714</orcidid><orcidid>https://orcid.org/0000-0002-3036-2833</orcidid><orcidid>https://orcid.org/0000-0002-5770-9614</orcidid><orcidid>https://orcid.org/0000000233039708</orcidid><orcidid>https://orcid.org/0000000264198218</orcidid><orcidid>https://orcid.org/0000000300687714</orcidid><orcidid>https://orcid.org/0000000230362833</orcidid><orcidid>https://orcid.org/0000000257709614</orcidid><orcidid>https://orcid.org/0000000163907863</orcidid><orcidid>https://orcid.org/0000000172933561</orcidid><orcidid>https://orcid.org/0000000340484540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-8953 |
ispartof | Journal of geophysical research. Biogeosciences, 2021-11, Vol.126 (11), p.n/a |
issn | 2169-8953 2169-8961 |
language | eng |
recordid | cdi_osti_scitechconnect_1829752 |
source | Wiley Journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Atmosphere Biodegradation Bogs Carbon 14 Carbon dioxide carbon loss Changing environments Climate change Destabilization Dissolved inorganic carbon Dissolved organic carbon Ecosystems Emission measurements Emissions Enclosures Environmental changes ENVIRONMENTAL SCIENCES Feedback loops GEOSCIENCES Glacial periods Global warming Ice ages Mass balance Methane Microorganisms Peat Peatlands Positive feedback Radiative forcing radiocarbon Radiocarbon dating Reservoirs Respiration Solid phases Substrates |
title | Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiocarbon%20Analyses%20Quantify%20Peat%20Carbon%20Losses%20With%20Increasing%20Temperature%20in%20a%20Whole%20Ecosystem%20Warming%20Experiment&rft.jtitle=Journal%20of%20geophysical%20research.%20Biogeosciences&rft.au=Wilson,%20Rachel%20M.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-11&rft.volume=126&rft.issue=11&rft.epage=n/a&rft.issn=2169-8953&rft.eissn=2169-8961&rft_id=info:doi/10.1029/2021JG006511&rft_dat=%3Cproquest_osti_%3E2600969715%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600969715&rft_id=info:pmid/&rfr_iscdi=true |