Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment

Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Biogeosciences 2021-11, Vol.126 (11), p.n/a
Hauptverfasser: Wilson, Rachel M., Griffiths, Natalie A., Visser, Ate, McFarlane, Karis J., Sebestyen, Stephen D., Oleheiser, Keith C., Bosman, Samantha, Hopple, Anya M., Tfaily, Malak M., Kolka, Randall K., Hanson, Paul J., Kostka, Joel E., Bridgham, Scott D., Keller, Jason K., Chanton, Jeffrey P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Journal of geophysical research. Biogeosciences
container_volume 126
creator Wilson, Rachel M.
Griffiths, Natalie A.
Visser, Ate
McFarlane, Karis J.
Sebestyen, Stephen D.
Oleheiser, Keith C.
Bosman, Samantha
Hopple, Anya M.
Tfaily, Malak M.
Kolka, Randall K.
Hanson, Paul J.
Kostka, Joel E.
Bridgham, Scott D.
Keller, Jason K.
Chanton, Jeffrey P.
description Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m‐deep in a peat bog over a 7‐year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7‐year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass‐balance model revealed increases in peat‐supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland‐climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source. Plain Language Summary Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large‐scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at w
doi_str_mv 10.1029/2021JG006511
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1829752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600969715</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3955-27afdb0b41cf421dbdfdb55e0d8b5083be8c8ce623290f8f53abcb53697008423</originalsourceid><addsrcrecordid>eNp90E1PAjEQBuCN0USC3PwBjV5F-0GX7pEQRAiJSjAcm253VkqgxbZE999bssZ4spd2Ok8mmTfLrgm-J5gWDxRTMp9inHNCzrIOJXnRF0VOzn_fnF1mvRC2OB2RvgjpZHGpKuO08qWzaGTVrgkQ0OtR2WjqBr2AimjcdhcunHprEzdoZrUHFYx9RyvYH8CrePSAjEUKrTduB2iiXWhChD1aK78_wclXcmYPNl5lF7XaBej93N3s7XGyGj_1F8_T2Xi06CtWcN6nQ1VXJS4HRNcDSqqySiXngCtRcixYCUILDTlltMC1qDlTpS45y4thWnBAWTe7aee6EI0M2kTQG-2sBR0lEbQY8hO6bdHBu48jhCi37uhTEkHSHOMiTSM8qbtWaZ9i8FDLQ9pF-UYSLE_5y7_5J85a_ml20Pxr5Xy6nFKKBWffN82Gyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600969715</pqid></control><display><type>article</type><title>Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment</title><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Wilson, Rachel M. ; Griffiths, Natalie A. ; Visser, Ate ; McFarlane, Karis J. ; Sebestyen, Stephen D. ; Oleheiser, Keith C. ; Bosman, Samantha ; Hopple, Anya M. ; Tfaily, Malak M. ; Kolka, Randall K. ; Hanson, Paul J. ; Kostka, Joel E. ; Bridgham, Scott D. ; Keller, Jason K. ; Chanton, Jeffrey P.</creator><creatorcontrib>Wilson, Rachel M. ; Griffiths, Natalie A. ; Visser, Ate ; McFarlane, Karis J. ; Sebestyen, Stephen D. ; Oleheiser, Keith C. ; Bosman, Samantha ; Hopple, Anya M. ; Tfaily, Malak M. ; Kolka, Randall K. ; Hanson, Paul J. ; Kostka, Joel E. ; Bridgham, Scott D. ; Keller, Jason K. ; Chanton, Jeffrey P. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m‐deep in a peat bog over a 7‐year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7‐year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass‐balance model revealed increases in peat‐supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland‐climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source. Plain Language Summary Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large‐scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at warmer temperatures more of the ancient peat carbon is being mobilized and respired to CO2. This is troubling as it signifies a positive feedback loop wherein warming stimulates peat to produce more CO2 which further exacerbates climate change. Key Points Radiocarbon mass balance demonstrates the loss of peat carbon in a peatland ecosystem warming experiment Peat carbon losses increased with warming treatment Tritium‐based analyses calculate approximately 30 cm y−1 downward advection of porewater through the top 1 m of peat</description><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1029/2021JG006511</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmosphere ; Biodegradation ; Bogs ; Carbon 14 ; Carbon dioxide ; carbon loss ; Changing environments ; Climate change ; Destabilization ; Dissolved inorganic carbon ; Dissolved organic carbon ; Ecosystems ; Emission measurements ; Emissions ; Enclosures ; Environmental changes ; ENVIRONMENTAL SCIENCES ; Feedback loops ; GEOSCIENCES ; Glacial periods ; Global warming ; Ice ages ; Mass balance ; Methane ; Microorganisms ; Peat ; Peatlands ; Positive feedback ; Radiative forcing ; radiocarbon ; Radiocarbon dating ; Reservoirs ; Respiration ; Solid phases ; Substrates</subject><ispartof>Journal of geophysical research. Biogeosciences, 2021-11, Vol.126 (11), p.n/a</ispartof><rights>2021 The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3955-27afdb0b41cf421dbdfdb55e0d8b5083be8c8ce623290f8f53abcb53697008423</citedby><cites>FETCH-LOGICAL-a3955-27afdb0b41cf421dbdfdb55e0d8b5083be8c8ce623290f8f53abcb53697008423</cites><orcidid>0000-0002-3303-9708 ; 0000-0003-4048-4540 ; 0000-0002-6419-8218 ; 0000-0001-7293-3561 ; 0000-0001-6390-7863 ; 0000-0003-0068-7714 ; 0000-0002-3036-2833 ; 0000-0002-5770-9614 ; 0000000233039708 ; 0000000264198218 ; 0000000300687714 ; 0000000230362833 ; 0000000257709614 ; 0000000163907863 ; 0000000172933561 ; 0000000340484540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JG006511$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JG006511$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1829752$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Rachel M.</creatorcontrib><creatorcontrib>Griffiths, Natalie A.</creatorcontrib><creatorcontrib>Visser, Ate</creatorcontrib><creatorcontrib>McFarlane, Karis J.</creatorcontrib><creatorcontrib>Sebestyen, Stephen D.</creatorcontrib><creatorcontrib>Oleheiser, Keith C.</creatorcontrib><creatorcontrib>Bosman, Samantha</creatorcontrib><creatorcontrib>Hopple, Anya M.</creatorcontrib><creatorcontrib>Tfaily, Malak M.</creatorcontrib><creatorcontrib>Kolka, Randall K.</creatorcontrib><creatorcontrib>Hanson, Paul J.</creatorcontrib><creatorcontrib>Kostka, Joel E.</creatorcontrib><creatorcontrib>Bridgham, Scott D.</creatorcontrib><creatorcontrib>Keller, Jason K.</creatorcontrib><creatorcontrib>Chanton, Jeffrey P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment</title><title>Journal of geophysical research. Biogeosciences</title><description>Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m‐deep in a peat bog over a 7‐year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7‐year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass‐balance model revealed increases in peat‐supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland‐climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source. Plain Language Summary Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large‐scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at warmer temperatures more of the ancient peat carbon is being mobilized and respired to CO2. This is troubling as it signifies a positive feedback loop wherein warming stimulates peat to produce more CO2 which further exacerbates climate change. Key Points Radiocarbon mass balance demonstrates the loss of peat carbon in a peatland ecosystem warming experiment Peat carbon losses increased with warming treatment Tritium‐based analyses calculate approximately 30 cm y−1 downward advection of porewater through the top 1 m of peat</description><subject>Atmosphere</subject><subject>Biodegradation</subject><subject>Bogs</subject><subject>Carbon 14</subject><subject>Carbon dioxide</subject><subject>carbon loss</subject><subject>Changing environments</subject><subject>Climate change</subject><subject>Destabilization</subject><subject>Dissolved inorganic carbon</subject><subject>Dissolved organic carbon</subject><subject>Ecosystems</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Enclosures</subject><subject>Environmental changes</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Feedback loops</subject><subject>GEOSCIENCES</subject><subject>Glacial periods</subject><subject>Global warming</subject><subject>Ice ages</subject><subject>Mass balance</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Peat</subject><subject>Peatlands</subject><subject>Positive feedback</subject><subject>Radiative forcing</subject><subject>radiocarbon</subject><subject>Radiocarbon dating</subject><subject>Reservoirs</subject><subject>Respiration</subject><subject>Solid phases</subject><subject>Substrates</subject><issn>2169-8953</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90E1PAjEQBuCN0USC3PwBjV5F-0GX7pEQRAiJSjAcm253VkqgxbZE999bssZ4spd2Ok8mmTfLrgm-J5gWDxRTMp9inHNCzrIOJXnRF0VOzn_fnF1mvRC2OB2RvgjpZHGpKuO08qWzaGTVrgkQ0OtR2WjqBr2AimjcdhcunHprEzdoZrUHFYx9RyvYH8CrePSAjEUKrTduB2iiXWhChD1aK78_wclXcmYPNl5lF7XaBej93N3s7XGyGj_1F8_T2Xi06CtWcN6nQ1VXJS4HRNcDSqqySiXngCtRcixYCUILDTlltMC1qDlTpS45y4thWnBAWTe7aee6EI0M2kTQG-2sBR0lEbQY8hO6bdHBu48jhCi37uhTEkHSHOMiTSM8qbtWaZ9i8FDLQ9pF-UYSLE_5y7_5J85a_ml20Pxr5Xy6nFKKBWffN82Gyg</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Wilson, Rachel M.</creator><creator>Griffiths, Natalie A.</creator><creator>Visser, Ate</creator><creator>McFarlane, Karis J.</creator><creator>Sebestyen, Stephen D.</creator><creator>Oleheiser, Keith C.</creator><creator>Bosman, Samantha</creator><creator>Hopple, Anya M.</creator><creator>Tfaily, Malak M.</creator><creator>Kolka, Randall K.</creator><creator>Hanson, Paul J.</creator><creator>Kostka, Joel E.</creator><creator>Bridgham, Scott D.</creator><creator>Keller, Jason K.</creator><creator>Chanton, Jeffrey P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3303-9708</orcidid><orcidid>https://orcid.org/0000-0003-4048-4540</orcidid><orcidid>https://orcid.org/0000-0002-6419-8218</orcidid><orcidid>https://orcid.org/0000-0001-7293-3561</orcidid><orcidid>https://orcid.org/0000-0001-6390-7863</orcidid><orcidid>https://orcid.org/0000-0003-0068-7714</orcidid><orcidid>https://orcid.org/0000-0002-3036-2833</orcidid><orcidid>https://orcid.org/0000-0002-5770-9614</orcidid><orcidid>https://orcid.org/0000000233039708</orcidid><orcidid>https://orcid.org/0000000264198218</orcidid><orcidid>https://orcid.org/0000000300687714</orcidid><orcidid>https://orcid.org/0000000230362833</orcidid><orcidid>https://orcid.org/0000000257709614</orcidid><orcidid>https://orcid.org/0000000163907863</orcidid><orcidid>https://orcid.org/0000000172933561</orcidid><orcidid>https://orcid.org/0000000340484540</orcidid></search><sort><creationdate>202111</creationdate><title>Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment</title><author>Wilson, Rachel M. ; Griffiths, Natalie A. ; Visser, Ate ; McFarlane, Karis J. ; Sebestyen, Stephen D. ; Oleheiser, Keith C. ; Bosman, Samantha ; Hopple, Anya M. ; Tfaily, Malak M. ; Kolka, Randall K. ; Hanson, Paul J. ; Kostka, Joel E. ; Bridgham, Scott D. ; Keller, Jason K. ; Chanton, Jeffrey P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3955-27afdb0b41cf421dbdfdb55e0d8b5083be8c8ce623290f8f53abcb53697008423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmosphere</topic><topic>Biodegradation</topic><topic>Bogs</topic><topic>Carbon 14</topic><topic>Carbon dioxide</topic><topic>carbon loss</topic><topic>Changing environments</topic><topic>Climate change</topic><topic>Destabilization</topic><topic>Dissolved inorganic carbon</topic><topic>Dissolved organic carbon</topic><topic>Ecosystems</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Enclosures</topic><topic>Environmental changes</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Feedback loops</topic><topic>GEOSCIENCES</topic><topic>Glacial periods</topic><topic>Global warming</topic><topic>Ice ages</topic><topic>Mass balance</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Peat</topic><topic>Peatlands</topic><topic>Positive feedback</topic><topic>Radiative forcing</topic><topic>radiocarbon</topic><topic>Radiocarbon dating</topic><topic>Reservoirs</topic><topic>Respiration</topic><topic>Solid phases</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Rachel M.</creatorcontrib><creatorcontrib>Griffiths, Natalie A.</creatorcontrib><creatorcontrib>Visser, Ate</creatorcontrib><creatorcontrib>McFarlane, Karis J.</creatorcontrib><creatorcontrib>Sebestyen, Stephen D.</creatorcontrib><creatorcontrib>Oleheiser, Keith C.</creatorcontrib><creatorcontrib>Bosman, Samantha</creatorcontrib><creatorcontrib>Hopple, Anya M.</creatorcontrib><creatorcontrib>Tfaily, Malak M.</creatorcontrib><creatorcontrib>Kolka, Randall K.</creatorcontrib><creatorcontrib>Hanson, Paul J.</creatorcontrib><creatorcontrib>Kostka, Joel E.</creatorcontrib><creatorcontrib>Bridgham, Scott D.</creatorcontrib><creatorcontrib>Keller, Jason K.</creatorcontrib><creatorcontrib>Chanton, Jeffrey P.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Rachel M.</au><au>Griffiths, Natalie A.</au><au>Visser, Ate</au><au>McFarlane, Karis J.</au><au>Sebestyen, Stephen D.</au><au>Oleheiser, Keith C.</au><au>Bosman, Samantha</au><au>Hopple, Anya M.</au><au>Tfaily, Malak M.</au><au>Kolka, Randall K.</au><au>Hanson, Paul J.</au><au>Kostka, Joel E.</au><au>Bridgham, Scott D.</au><au>Keller, Jason K.</au><au>Chanton, Jeffrey P.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment</atitle><jtitle>Journal of geophysical research. Biogeosciences</jtitle><date>2021-11</date><risdate>2021</risdate><volume>126</volume><issue>11</issue><epage>n/a</epage><issn>2169-8953</issn><eissn>2169-8961</eissn><abstract>Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem‐scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m‐deep in a peat bog over a 7‐year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7‐year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass‐balance model revealed increases in peat‐supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland‐climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source. Plain Language Summary Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large‐scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at warmer temperatures more of the ancient peat carbon is being mobilized and respired to CO2. This is troubling as it signifies a positive feedback loop wherein warming stimulates peat to produce more CO2 which further exacerbates climate change. Key Points Radiocarbon mass balance demonstrates the loss of peat carbon in a peatland ecosystem warming experiment Peat carbon losses increased with warming treatment Tritium‐based analyses calculate approximately 30 cm y−1 downward advection of porewater through the top 1 m of peat</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021JG006511</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3303-9708</orcidid><orcidid>https://orcid.org/0000-0003-4048-4540</orcidid><orcidid>https://orcid.org/0000-0002-6419-8218</orcidid><orcidid>https://orcid.org/0000-0001-7293-3561</orcidid><orcidid>https://orcid.org/0000-0001-6390-7863</orcidid><orcidid>https://orcid.org/0000-0003-0068-7714</orcidid><orcidid>https://orcid.org/0000-0002-3036-2833</orcidid><orcidid>https://orcid.org/0000-0002-5770-9614</orcidid><orcidid>https://orcid.org/0000000233039708</orcidid><orcidid>https://orcid.org/0000000264198218</orcidid><orcidid>https://orcid.org/0000000300687714</orcidid><orcidid>https://orcid.org/0000000230362833</orcidid><orcidid>https://orcid.org/0000000257709614</orcidid><orcidid>https://orcid.org/0000000163907863</orcidid><orcidid>https://orcid.org/0000000172933561</orcidid><orcidid>https://orcid.org/0000000340484540</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-8953
ispartof Journal of geophysical research. Biogeosciences, 2021-11, Vol.126 (11), p.n/a
issn 2169-8953
2169-8961
language eng
recordid cdi_osti_scitechconnect_1829752
source Wiley Journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Atmosphere
Biodegradation
Bogs
Carbon 14
Carbon dioxide
carbon loss
Changing environments
Climate change
Destabilization
Dissolved inorganic carbon
Dissolved organic carbon
Ecosystems
Emission measurements
Emissions
Enclosures
Environmental changes
ENVIRONMENTAL SCIENCES
Feedback loops
GEOSCIENCES
Glacial periods
Global warming
Ice ages
Mass balance
Methane
Microorganisms
Peat
Peatlands
Positive feedback
Radiative forcing
radiocarbon
Radiocarbon dating
Reservoirs
Respiration
Solid phases
Substrates
title Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiocarbon%20Analyses%20Quantify%20Peat%20Carbon%20Losses%20With%20Increasing%20Temperature%20in%20a%20Whole%20Ecosystem%20Warming%20Experiment&rft.jtitle=Journal%20of%20geophysical%20research.%20Biogeosciences&rft.au=Wilson,%20Rachel%20M.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2021-11&rft.volume=126&rft.issue=11&rft.epage=n/a&rft.issn=2169-8953&rft.eissn=2169-8961&rft_id=info:doi/10.1029/2021JG006511&rft_dat=%3Cproquest_osti_%3E2600969715%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600969715&rft_id=info:pmid/&rfr_iscdi=true