Dynamic strain evolution in an optically excited Pt thin film

The structural evolution of a Pt thin film following photo-thermal excitation by 1 ps optical laser pulses was studied with a time resolution of 100 ps over a total time period of 1 ms. Laser pulse fluences below 50 mJ/cm2 were insufficient to relax the residual stress state of the as-prepared film...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2021-11, Vol.11 (11), p.115111-115111
Hauptverfasser: DeCamp, M. F., DiChiara, A. D., Unruh, K. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115111
container_issue 11
container_start_page 115111
container_title AIP advances
container_volume 11
creator DeCamp, M. F.
DiChiara, A. D.
Unruh, K. M.
description The structural evolution of a Pt thin film following photo-thermal excitation by 1 ps optical laser pulses was studied with a time resolution of 100 ps over a total time period of 1 ms. Laser pulse fluences below 50 mJ/cm2 were insufficient to relax the residual stress state of the as-prepared film even after 10 000 pulses. In this fluence regime, a rapid initial lattice expansion and a decrease in the lattice coherence length due to ultrafast photo-thermal heating were observed. The lattice expansion reached a maximum, and the coherence length reached a minimum, 100–200 ps after excitation before monotonically decaying back to their initial values in about 1 µs. Laser pulse fluences greater than 50 mJ/cm2 produced irreversible stress relaxation within the first 10 optical pulses. In this regime, the lattice expansion was qualitatively similar to that in the low fluence regime, except that the initial structural state was not recovered. The evolution in the coherence length, however, was more complex. Following an initial decrease similar to that observed at low fluence, the coherence length then increased to a broad maximum greater than the initial value, before recovery.
doi_str_mv 10.1063/5.0067770
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1829347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_29dbe944cc2343d59971140ba3702a9b</doaj_id><sourcerecordid>2597486153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-1d4bd6b527f493cf55a189516e2624a706cf33b800847d3eed79c9445a0bc0e03</originalsourceid><addsrcrecordid>eNp9kltvFCEcxYnR2Gbtg99goi_aZCt3hgebmNZLkyb6oM-EAabLZgZWYDbut5dxNtVqIi9c_j8OhwMAPEfwAkFO3rALCLkQAj4Cpxixdk0w5o__GJ-As5y3sDYqEWzpU3BCqOCMYHQK3l4fgh69aXJJ2ofG7eMwFR9DUyc6NHFXvNHDcGjcD-OLs82X0pRNLfZ-GJ-BJ70esjs79ivw7cP7r1ef1refP95cvbtdG0ZJWSNLO8s7hkVPJTE9Yxq1kiHuMMdUC8hNT0jXwupOWOKcFdJISpmGnYEOkhW4WXRt1Fu1S37U6aCi9urXQkx3SqdqdHAKS9u5utcYTCixTEqBEIWdJgJiLbuqdblo7aZudNa4UG8-PBB9WAl-o-7iXrVMiLbGtgIvFoGYi1d5TsVsTAzBmaJQi2VNt0Kvjqek-H1yuajRZ-OGQQcXp6wwk4K2HDFS0Zd_ods4pVDznCna1gilrNTrhTIp5pxcf-8YQTV_BMXU8SNU9nxhZ3N6fs17eB_Tb1DtbP8_-F_ln4zHvN8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594854399</pqid></control><display><type>article</type><title>Dynamic strain evolution in an optically excited Pt thin film</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>DeCamp, M. F. ; DiChiara, A. D. ; Unruh, K. M.</creator><creatorcontrib>DeCamp, M. F. ; DiChiara, A. D. ; Unruh, K. M.</creatorcontrib><description>The structural evolution of a Pt thin film following photo-thermal excitation by 1 ps optical laser pulses was studied with a time resolution of 100 ps over a total time period of 1 ms. Laser pulse fluences below 50 mJ/cm2 were insufficient to relax the residual stress state of the as-prepared film even after 10 000 pulses. In this fluence regime, a rapid initial lattice expansion and a decrease in the lattice coherence length due to ultrafast photo-thermal heating were observed. The lattice expansion reached a maximum, and the coherence length reached a minimum, 100–200 ps after excitation before monotonically decaying back to their initial values in about 1 µs. Laser pulse fluences greater than 50 mJ/cm2 produced irreversible stress relaxation within the first 10 optical pulses. In this regime, the lattice expansion was qualitatively similar to that in the low fluence regime, except that the initial structural state was not recovered. The evolution in the coherence length, however, was more complex. Following an initial decrease similar to that observed at low fluence, the coherence length then increased to a broad maximum greater than the initial value, before recovery.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0067770</identifier><identifier>PMID: 34765321</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coherence length ; Evolution ; Excitation ; Fluence ; Lasers ; Optical pulses ; Regular ; Residual stress ; Stress relaxation ; Thin films</subject><ispartof>AIP advances, 2021-11, Vol.11 (11), p.115111-115111</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>2021 Author(s). 2021 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-1d4bd6b527f493cf55a189516e2624a706cf33b800847d3eed79c9445a0bc0e03</citedby><cites>FETCH-LOGICAL-c543t-1d4bd6b527f493cf55a189516e2624a706cf33b800847d3eed79c9445a0bc0e03</cites><orcidid>0000-0002-4982-9536 ; 0000000249829536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2100,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1829347$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>DeCamp, M. F.</creatorcontrib><creatorcontrib>DiChiara, A. D.</creatorcontrib><creatorcontrib>Unruh, K. M.</creatorcontrib><title>Dynamic strain evolution in an optically excited Pt thin film</title><title>AIP advances</title><description>The structural evolution of a Pt thin film following photo-thermal excitation by 1 ps optical laser pulses was studied with a time resolution of 100 ps over a total time period of 1 ms. Laser pulse fluences below 50 mJ/cm2 were insufficient to relax the residual stress state of the as-prepared film even after 10 000 pulses. In this fluence regime, a rapid initial lattice expansion and a decrease in the lattice coherence length due to ultrafast photo-thermal heating were observed. The lattice expansion reached a maximum, and the coherence length reached a minimum, 100–200 ps after excitation before monotonically decaying back to their initial values in about 1 µs. Laser pulse fluences greater than 50 mJ/cm2 produced irreversible stress relaxation within the first 10 optical pulses. In this regime, the lattice expansion was qualitatively similar to that in the low fluence regime, except that the initial structural state was not recovered. The evolution in the coherence length, however, was more complex. Following an initial decrease similar to that observed at low fluence, the coherence length then increased to a broad maximum greater than the initial value, before recovery.</description><subject>Coherence length</subject><subject>Evolution</subject><subject>Excitation</subject><subject>Fluence</subject><subject>Lasers</subject><subject>Optical pulses</subject><subject>Regular</subject><subject>Residual stress</subject><subject>Stress relaxation</subject><subject>Thin films</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kltvFCEcxYnR2Gbtg99goi_aZCt3hgebmNZLkyb6oM-EAabLZgZWYDbut5dxNtVqIi9c_j8OhwMAPEfwAkFO3rALCLkQAj4Cpxixdk0w5o__GJ-As5y3sDYqEWzpU3BCqOCMYHQK3l4fgh69aXJJ2ofG7eMwFR9DUyc6NHFXvNHDcGjcD-OLs82X0pRNLfZ-GJ-BJ70esjs79ivw7cP7r1ef1refP95cvbtdG0ZJWSNLO8s7hkVPJTE9Yxq1kiHuMMdUC8hNT0jXwupOWOKcFdJISpmGnYEOkhW4WXRt1Fu1S37U6aCi9urXQkx3SqdqdHAKS9u5utcYTCixTEqBEIWdJgJiLbuqdblo7aZudNa4UG8-PBB9WAl-o-7iXrVMiLbGtgIvFoGYi1d5TsVsTAzBmaJQi2VNt0Kvjqek-H1yuajRZ-OGQQcXp6wwk4K2HDFS0Zd_ods4pVDznCna1gilrNTrhTIp5pxcf-8YQTV_BMXU8SNU9nxhZ3N6fs17eB_Tb1DtbP8_-F_ln4zHvN8</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>DeCamp, M. F.</creator><creator>DiChiara, A. D.</creator><creator>Unruh, K. M.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4982-9536</orcidid><orcidid>https://orcid.org/0000000249829536</orcidid></search><sort><creationdate>20211101</creationdate><title>Dynamic strain evolution in an optically excited Pt thin film</title><author>DeCamp, M. F. ; DiChiara, A. D. ; Unruh, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-1d4bd6b527f493cf55a189516e2624a706cf33b800847d3eed79c9445a0bc0e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coherence length</topic><topic>Evolution</topic><topic>Excitation</topic><topic>Fluence</topic><topic>Lasers</topic><topic>Optical pulses</topic><topic>Regular</topic><topic>Residual stress</topic><topic>Stress relaxation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeCamp, M. F.</creatorcontrib><creatorcontrib>DiChiara, A. D.</creatorcontrib><creatorcontrib>Unruh, K. M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeCamp, M. F.</au><au>DiChiara, A. D.</au><au>Unruh, K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic strain evolution in an optically excited Pt thin film</atitle><jtitle>AIP advances</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>11</issue><spage>115111</spage><epage>115111</epage><pages>115111-115111</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The structural evolution of a Pt thin film following photo-thermal excitation by 1 ps optical laser pulses was studied with a time resolution of 100 ps over a total time period of 1 ms. Laser pulse fluences below 50 mJ/cm2 were insufficient to relax the residual stress state of the as-prepared film even after 10 000 pulses. In this fluence regime, a rapid initial lattice expansion and a decrease in the lattice coherence length due to ultrafast photo-thermal heating were observed. The lattice expansion reached a maximum, and the coherence length reached a minimum, 100–200 ps after excitation before monotonically decaying back to their initial values in about 1 µs. Laser pulse fluences greater than 50 mJ/cm2 produced irreversible stress relaxation within the first 10 optical pulses. In this regime, the lattice expansion was qualitatively similar to that in the low fluence regime, except that the initial structural state was not recovered. The evolution in the coherence length, however, was more complex. Following an initial decrease similar to that observed at low fluence, the coherence length then increased to a broad maximum greater than the initial value, before recovery.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><pmid>34765321</pmid><doi>10.1063/5.0067770</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4982-9536</orcidid><orcidid>https://orcid.org/0000000249829536</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2021-11, Vol.11 (11), p.115111-115111
issn 2158-3226
2158-3226
language eng
recordid cdi_osti_scitechconnect_1829347
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Coherence length
Evolution
Excitation
Fluence
Lasers
Optical pulses
Regular
Residual stress
Stress relaxation
Thin films
title Dynamic strain evolution in an optically excited Pt thin film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20strain%20evolution%20in%20an%20optically%20excited%20Pt%20thin%20film&rft.jtitle=AIP%20advances&rft.au=DeCamp,%20M.%20F.&rft.date=2021-11-01&rft.volume=11&rft.issue=11&rft.spage=115111&rft.epage=115111&rft.pages=115111-115111&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0067770&rft_dat=%3Cproquest_osti_%3E2597486153%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594854399&rft_id=info:pmid/34765321&rft_doaj_id=oai_doaj_org_article_29dbe944cc2343d59971140ba3702a9b&rfr_iscdi=true