An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis
We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material r...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2021-10, Vol.384 (C), p.113977, Article 113977 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 113977 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 384 |
creator | Alaydin, M.D. Benson, D.J. Bazilevs, Y. |
description | We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material response in the time-rate form while ensuring objectivity. To handle complex multipatch geometries, we propose a consistent penalty coupling technique for enforcing the continuity conditions at patch interfaces. Penalty is also employed to weakly enforce symmetry boundary conditions. A recently proposed non-local penalty contact is adopted as part of the formulation in order to handle complex dynamic crushing simulations. Numerical examples, ranging from static elasto-plastic shell benchmarks to highly dynamic crushing scenarios, validate the accuracy, efficiency and robustness of the proposed framework.
•Proposed a comprehensive Isogeometric Kirchhoff–Love shell framework for elastoplastic analysis.•Reformulated the governing equations in terms of the mid-surface velocity degrees of freedom.•Proposed penalty approaches to handle patch coupling, symmetry BCs, and self-contact.•Carried out static benchmark and dynamic crushing simulations to demonstrate the superior performance. |
doi_str_mv | 10.1016/j.cma.2021.113977 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1828204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578252100308X</els_id><sourcerecordid>2562924118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-333d5fd0d5eed7c480d8f3464bdc558fa5ee3dcec74548032ebef9d08ce3939b3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHYRrFP8EzeOWFUVPxWV2NC15drjxiWNi50WdccduCEnwVVYM5uRZr43evMQuiZ4RDAZ361HeqNGFFMyIoRVZXmCBkSUVU4JE6dogHHB81JQfo4uYlzjVILQAVpM2my3NaoDk83VKqh25VSb2aA28OnDe2Z9yGbRr8BvoAtOZy8u6Lr21v58fc_9HrKudm0ea2iaTLWqOUQXL9GZVU2Eq78-RIvHh7fpcz5_fZpNJ_Ncs4p3OWPMcGuw4QCm1IXARlhWjIul0ZwLq9KcGQ26LHhaMgpLsJXBQgOrWLVkQ3TT3_WxczJq14GutW9b0J0kggqKiwTd9tA2-I8dxE6u_S4kp1FSPqYVLQgRiSI9pYOPMYCV2-A2KhwkwfIYsVzLFLE8Riz7iJPmvtdA-nHvIBwtQKvBuHB0YLz7R_0LYCqFOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562924118</pqid></control><display><type>article</type><title>An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Alaydin, M.D. ; Benson, D.J. ; Bazilevs, Y.</creator><creatorcontrib>Alaydin, M.D. ; Benson, D.J. ; Bazilevs, Y.</creatorcontrib><description>We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material response in the time-rate form while ensuring objectivity. To handle complex multipatch geometries, we propose a consistent penalty coupling technique for enforcing the continuity conditions at patch interfaces. Penalty is also employed to weakly enforce symmetry boundary conditions. A recently proposed non-local penalty contact is adopted as part of the formulation in order to handle complex dynamic crushing simulations. Numerical examples, ranging from static elasto-plastic shell benchmarks to highly dynamic crushing scenarios, validate the accuracy, efficiency and robustness of the proposed framework.
•Proposed a comprehensive Isogeometric Kirchhoff–Love shell framework for elastoplastic analysis.•Reformulated the governing equations in terms of the mid-surface velocity degrees of freedom.•Proposed penalty approaches to handle patch coupling, symmetry BCs, and self-contact.•Carried out static benchmark and dynamic crushing simulations to demonstrate the superior performance.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2021.113977</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3D constitutive laws ; Boundary conditions ; Crushing ; Crushing simulations ; Isogeometric Analysis (IGA) ; Kirchhoff–Love shells ; Mathematical analysis ; Penalty coupling ; Plastic shells ; Robustness (mathematics) ; Updated Lagrangian formulation</subject><ispartof>Computer methods in applied mechanics and engineering, 2021-10, Vol.384 (C), p.113977, Article 113977</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-333d5fd0d5eed7c480d8f3464bdc558fa5ee3dcec74548032ebef9d08ce3939b3</citedby><cites>FETCH-LOGICAL-c395t-333d5fd0d5eed7c480d8f3464bdc558fa5ee3dcec74548032ebef9d08ce3939b3</cites><orcidid>0000-0001-7702-7752 ; 0000000177027752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2021.113977$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1828204$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alaydin, M.D.</creatorcontrib><creatorcontrib>Benson, D.J.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><title>An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis</title><title>Computer methods in applied mechanics and engineering</title><description>We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material response in the time-rate form while ensuring objectivity. To handle complex multipatch geometries, we propose a consistent penalty coupling technique for enforcing the continuity conditions at patch interfaces. Penalty is also employed to weakly enforce symmetry boundary conditions. A recently proposed non-local penalty contact is adopted as part of the formulation in order to handle complex dynamic crushing simulations. Numerical examples, ranging from static elasto-plastic shell benchmarks to highly dynamic crushing scenarios, validate the accuracy, efficiency and robustness of the proposed framework.
•Proposed a comprehensive Isogeometric Kirchhoff–Love shell framework for elastoplastic analysis.•Reformulated the governing equations in terms of the mid-surface velocity degrees of freedom.•Proposed penalty approaches to handle patch coupling, symmetry BCs, and self-contact.•Carried out static benchmark and dynamic crushing simulations to demonstrate the superior performance.</description><subject>3D constitutive laws</subject><subject>Boundary conditions</subject><subject>Crushing</subject><subject>Crushing simulations</subject><subject>Isogeometric Analysis (IGA)</subject><subject>Kirchhoff–Love shells</subject><subject>Mathematical analysis</subject><subject>Penalty coupling</subject><subject>Plastic shells</subject><subject>Robustness (mathematics)</subject><subject>Updated Lagrangian formulation</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHYRrFP8EzeOWFUVPxWV2NC15drjxiWNi50WdccduCEnwVVYM5uRZr43evMQuiZ4RDAZ361HeqNGFFMyIoRVZXmCBkSUVU4JE6dogHHB81JQfo4uYlzjVILQAVpM2my3NaoDk83VKqh25VSb2aA28OnDe2Z9yGbRr8BvoAtOZy8u6Lr21v58fc_9HrKudm0ea2iaTLWqOUQXL9GZVU2Eq78-RIvHh7fpcz5_fZpNJ_Ncs4p3OWPMcGuw4QCm1IXARlhWjIul0ZwLq9KcGQ26LHhaMgpLsJXBQgOrWLVkQ3TT3_WxczJq14GutW9b0J0kggqKiwTd9tA2-I8dxE6u_S4kp1FSPqYVLQgRiSI9pYOPMYCV2-A2KhwkwfIYsVzLFLE8Riz7iJPmvtdA-nHvIBwtQKvBuHB0YLz7R_0LYCqFOw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Alaydin, M.D.</creator><creator>Benson, D.J.</creator><creator>Bazilevs, Y.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7702-7752</orcidid><orcidid>https://orcid.org/0000000177027752</orcidid></search><sort><creationdate>20211001</creationdate><title>An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis</title><author>Alaydin, M.D. ; Benson, D.J. ; Bazilevs, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-333d5fd0d5eed7c480d8f3464bdc558fa5ee3dcec74548032ebef9d08ce3939b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D constitutive laws</topic><topic>Boundary conditions</topic><topic>Crushing</topic><topic>Crushing simulations</topic><topic>Isogeometric Analysis (IGA)</topic><topic>Kirchhoff–Love shells</topic><topic>Mathematical analysis</topic><topic>Penalty coupling</topic><topic>Plastic shells</topic><topic>Robustness (mathematics)</topic><topic>Updated Lagrangian formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alaydin, M.D.</creatorcontrib><creatorcontrib>Benson, D.J.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaydin, M.D.</au><au>Benson, D.J.</au><au>Bazilevs, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>384</volume><issue>C</issue><spage>113977</spage><pages>113977-</pages><artnum>113977</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material response in the time-rate form while ensuring objectivity. To handle complex multipatch geometries, we propose a consistent penalty coupling technique for enforcing the continuity conditions at patch interfaces. Penalty is also employed to weakly enforce symmetry boundary conditions. A recently proposed non-local penalty contact is adopted as part of the formulation in order to handle complex dynamic crushing simulations. Numerical examples, ranging from static elasto-plastic shell benchmarks to highly dynamic crushing scenarios, validate the accuracy, efficiency and robustness of the proposed framework.
•Proposed a comprehensive Isogeometric Kirchhoff–Love shell framework for elastoplastic analysis.•Reformulated the governing equations in terms of the mid-surface velocity degrees of freedom.•Proposed penalty approaches to handle patch coupling, symmetry BCs, and self-contact.•Carried out static benchmark and dynamic crushing simulations to demonstrate the superior performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2021.113977</doi><orcidid>https://orcid.org/0000-0001-7702-7752</orcidid><orcidid>https://orcid.org/0000000177027752</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2021-10, Vol.384 (C), p.113977, Article 113977 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_osti_scitechconnect_1828204 |
source | Access via ScienceDirect (Elsevier) |
subjects | 3D constitutive laws Boundary conditions Crushing Crushing simulations Isogeometric Analysis (IGA) Kirchhoff–Love shells Mathematical analysis Penalty coupling Plastic shells Robustness (mathematics) Updated Lagrangian formulation |
title | An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20updated%20Lagrangian%20framework%20for%20Isogeometric%20Kirchhoff%E2%80%93Love%20thin-shell%20analysis&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Alaydin,%20M.D.&rft.date=2021-10-01&rft.volume=384&rft.issue=C&rft.spage=113977&rft.pages=113977-&rft.artnum=113977&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2021.113977&rft_dat=%3Cproquest_osti_%3E2562924118%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562924118&rft_id=info:pmid/&rft_els_id=S004578252100308X&rfr_iscdi=true |