An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis

We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2021-10, Vol.384 (C), p.113977, Article 113977
Hauptverfasser: Alaydin, M.D., Benson, D.J., Bazilevs, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 113977
container_title Computer methods in applied mechanics and engineering
container_volume 384
creator Alaydin, M.D.
Benson, D.J.
Bazilevs, Y.
description We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material response in the time-rate form while ensuring objectivity. To handle complex multipatch geometries, we propose a consistent penalty coupling technique for enforcing the continuity conditions at patch interfaces. Penalty is also employed to weakly enforce symmetry boundary conditions. A recently proposed non-local penalty contact is adopted as part of the formulation in order to handle complex dynamic crushing simulations. Numerical examples, ranging from static elasto-plastic shell benchmarks to highly dynamic crushing scenarios, validate the accuracy, efficiency and robustness of the proposed framework. •Proposed a comprehensive Isogeometric Kirchhoff–Love shell framework for elastoplastic analysis.•Reformulated the governing equations in terms of the mid-surface velocity degrees of freedom.•Proposed penalty approaches to handle patch coupling, symmetry BCs, and self-contact.•Carried out static benchmark and dynamic crushing simulations to demonstrate the superior performance.
doi_str_mv 10.1016/j.cma.2021.113977
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1828204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578252100308X</els_id><sourcerecordid>2562924118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-333d5fd0d5eed7c480d8f3464bdc558fa5ee3dcec74548032ebef9d08ce3939b3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHYRrFP8EzeOWFUVPxWV2NC15drjxiWNi50WdccduCEnwVVYM5uRZr43evMQuiZ4RDAZ361HeqNGFFMyIoRVZXmCBkSUVU4JE6dogHHB81JQfo4uYlzjVILQAVpM2my3NaoDk83VKqh25VSb2aA28OnDe2Z9yGbRr8BvoAtOZy8u6Lr21v58fc_9HrKudm0ea2iaTLWqOUQXL9GZVU2Eq78-RIvHh7fpcz5_fZpNJ_Ncs4p3OWPMcGuw4QCm1IXARlhWjIul0ZwLq9KcGQ26LHhaMgpLsJXBQgOrWLVkQ3TT3_WxczJq14GutW9b0J0kggqKiwTd9tA2-I8dxE6u_S4kp1FSPqYVLQgRiSI9pYOPMYCV2-A2KhwkwfIYsVzLFLE8Riz7iJPmvtdA-nHvIBwtQKvBuHB0YLz7R_0LYCqFOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562924118</pqid></control><display><type>article</type><title>An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Alaydin, M.D. ; Benson, D.J. ; Bazilevs, Y.</creator><creatorcontrib>Alaydin, M.D. ; Benson, D.J. ; Bazilevs, Y.</creatorcontrib><description>We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material response in the time-rate form while ensuring objectivity. To handle complex multipatch geometries, we propose a consistent penalty coupling technique for enforcing the continuity conditions at patch interfaces. Penalty is also employed to weakly enforce symmetry boundary conditions. A recently proposed non-local penalty contact is adopted as part of the formulation in order to handle complex dynamic crushing simulations. Numerical examples, ranging from static elasto-plastic shell benchmarks to highly dynamic crushing scenarios, validate the accuracy, efficiency and robustness of the proposed framework. •Proposed a comprehensive Isogeometric Kirchhoff–Love shell framework for elastoplastic analysis.•Reformulated the governing equations in terms of the mid-surface velocity degrees of freedom.•Proposed penalty approaches to handle patch coupling, symmetry BCs, and self-contact.•Carried out static benchmark and dynamic crushing simulations to demonstrate the superior performance.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2021.113977</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3D constitutive laws ; Boundary conditions ; Crushing ; Crushing simulations ; Isogeometric Analysis (IGA) ; Kirchhoff–Love shells ; Mathematical analysis ; Penalty coupling ; Plastic shells ; Robustness (mathematics) ; Updated Lagrangian formulation</subject><ispartof>Computer methods in applied mechanics and engineering, 2021-10, Vol.384 (C), p.113977, Article 113977</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-333d5fd0d5eed7c480d8f3464bdc558fa5ee3dcec74548032ebef9d08ce3939b3</citedby><cites>FETCH-LOGICAL-c395t-333d5fd0d5eed7c480d8f3464bdc558fa5ee3dcec74548032ebef9d08ce3939b3</cites><orcidid>0000-0001-7702-7752 ; 0000000177027752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2021.113977$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1828204$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alaydin, M.D.</creatorcontrib><creatorcontrib>Benson, D.J.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><title>An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis</title><title>Computer methods in applied mechanics and engineering</title><description>We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material response in the time-rate form while ensuring objectivity. To handle complex multipatch geometries, we propose a consistent penalty coupling technique for enforcing the continuity conditions at patch interfaces. Penalty is also employed to weakly enforce symmetry boundary conditions. A recently proposed non-local penalty contact is adopted as part of the formulation in order to handle complex dynamic crushing simulations. Numerical examples, ranging from static elasto-plastic shell benchmarks to highly dynamic crushing scenarios, validate the accuracy, efficiency and robustness of the proposed framework. •Proposed a comprehensive Isogeometric Kirchhoff–Love shell framework for elastoplastic analysis.•Reformulated the governing equations in terms of the mid-surface velocity degrees of freedom.•Proposed penalty approaches to handle patch coupling, symmetry BCs, and self-contact.•Carried out static benchmark and dynamic crushing simulations to demonstrate the superior performance.</description><subject>3D constitutive laws</subject><subject>Boundary conditions</subject><subject>Crushing</subject><subject>Crushing simulations</subject><subject>Isogeometric Analysis (IGA)</subject><subject>Kirchhoff–Love shells</subject><subject>Mathematical analysis</subject><subject>Penalty coupling</subject><subject>Plastic shells</subject><subject>Robustness (mathematics)</subject><subject>Updated Lagrangian formulation</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHYRrFP8EzeOWFUVPxWV2NC15drjxiWNi50WdccduCEnwVVYM5uRZr43evMQuiZ4RDAZ361HeqNGFFMyIoRVZXmCBkSUVU4JE6dogHHB81JQfo4uYlzjVILQAVpM2my3NaoDk83VKqh25VSb2aA28OnDe2Z9yGbRr8BvoAtOZy8u6Lr21v58fc_9HrKudm0ea2iaTLWqOUQXL9GZVU2Eq78-RIvHh7fpcz5_fZpNJ_Ncs4p3OWPMcGuw4QCm1IXARlhWjIul0ZwLq9KcGQ26LHhaMgpLsJXBQgOrWLVkQ3TT3_WxczJq14GutW9b0J0kggqKiwTd9tA2-I8dxE6u_S4kp1FSPqYVLQgRiSI9pYOPMYCV2-A2KhwkwfIYsVzLFLE8Riz7iJPmvtdA-nHvIBwtQKvBuHB0YLz7R_0LYCqFOw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Alaydin, M.D.</creator><creator>Benson, D.J.</creator><creator>Bazilevs, Y.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7702-7752</orcidid><orcidid>https://orcid.org/0000000177027752</orcidid></search><sort><creationdate>20211001</creationdate><title>An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis</title><author>Alaydin, M.D. ; Benson, D.J. ; Bazilevs, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-333d5fd0d5eed7c480d8f3464bdc558fa5ee3dcec74548032ebef9d08ce3939b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D constitutive laws</topic><topic>Boundary conditions</topic><topic>Crushing</topic><topic>Crushing simulations</topic><topic>Isogeometric Analysis (IGA)</topic><topic>Kirchhoff–Love shells</topic><topic>Mathematical analysis</topic><topic>Penalty coupling</topic><topic>Plastic shells</topic><topic>Robustness (mathematics)</topic><topic>Updated Lagrangian formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alaydin, M.D.</creatorcontrib><creatorcontrib>Benson, D.J.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaydin, M.D.</au><au>Benson, D.J.</au><au>Bazilevs, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>384</volume><issue>C</issue><spage>113977</spage><pages>113977-</pages><artnum>113977</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We propose a comprehensive Isogeometric Kirchhoff–Love shell framework that is capable of undergoing large elasto-plastic deformations. Central to this development, we reformulate the governing thin-shell equations in terms of the mid-surface velocity degrees of freedom, accommodating the material response in the time-rate form while ensuring objectivity. To handle complex multipatch geometries, we propose a consistent penalty coupling technique for enforcing the continuity conditions at patch interfaces. Penalty is also employed to weakly enforce symmetry boundary conditions. A recently proposed non-local penalty contact is adopted as part of the formulation in order to handle complex dynamic crushing simulations. Numerical examples, ranging from static elasto-plastic shell benchmarks to highly dynamic crushing scenarios, validate the accuracy, efficiency and robustness of the proposed framework. •Proposed a comprehensive Isogeometric Kirchhoff–Love shell framework for elastoplastic analysis.•Reformulated the governing equations in terms of the mid-surface velocity degrees of freedom.•Proposed penalty approaches to handle patch coupling, symmetry BCs, and self-contact.•Carried out static benchmark and dynamic crushing simulations to demonstrate the superior performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2021.113977</doi><orcidid>https://orcid.org/0000-0001-7702-7752</orcidid><orcidid>https://orcid.org/0000000177027752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2021-10, Vol.384 (C), p.113977, Article 113977
issn 0045-7825
1879-2138
language eng
recordid cdi_osti_scitechconnect_1828204
source Access via ScienceDirect (Elsevier)
subjects 3D constitutive laws
Boundary conditions
Crushing
Crushing simulations
Isogeometric Analysis (IGA)
Kirchhoff–Love shells
Mathematical analysis
Penalty coupling
Plastic shells
Robustness (mathematics)
Updated Lagrangian formulation
title An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20updated%20Lagrangian%20framework%20for%20Isogeometric%20Kirchhoff%E2%80%93Love%20thin-shell%20analysis&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Alaydin,%20M.D.&rft.date=2021-10-01&rft.volume=384&rft.issue=C&rft.spage=113977&rft.pages=113977-&rft.artnum=113977&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2021.113977&rft_dat=%3Cproquest_osti_%3E2562924118%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562924118&rft_id=info:pmid/&rft_els_id=S004578252100308X&rfr_iscdi=true