Nanoparticle/Polyelectrolyte Complexes for Biomimetic Constructs

Abstract Constructing all‐aqueous systems with tailored geometries can generate a new class of biomimetic materials, a fascinating but challenging goal to achieve. Here, by taking advantage of the interfacial complexation of a polyelectrolyte (PE) and cellulose nanocrystals (CNCs), a unique interfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-10, Vol.32 (6)
Hauptverfasser: Yin, Yixuan, Liu, Tan, Wang, Beibei, Yin, Bangqi, Yang, Yang, Russell, Thomas P., Shi, Shaowei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Advanced functional materials
container_volume 32
creator Yin, Yixuan
Liu, Tan
Wang, Beibei
Yin, Bangqi
Yang, Yang
Russell, Thomas P.
Shi, Shaowei
description Abstract Constructing all‐aqueous systems with tailored geometries can generate a new class of biomimetic materials, a fascinating but challenging goal to achieve. Here, by taking advantage of the interfacial complexation of a polyelectrolyte (PE) and cellulose nanocrystals (CNCs), a unique interfacial PE/CNC complex is demonstrated for the stabilization of aqueous two‐phase systems and for the fabrication of all‐aqueous double emulsions and 3D constructs. The thickness of PE/CNC complex can be effectively adjusted by tuning the osmotic stress imbalance between the two aqueous phases and, during the formation and thickening of PE/CNC complex, individual assemblies can be connected to design hierarchical all‐aqueous structures. This new platform affords tremendous potential for engineering biomimetic constructs with advanced functionality, that can be used for chemical separation, delivery, and biphasic cascading reaction vessels.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1827776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827776</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18277763</originalsourceid><addsrcrecordid>eNpjYuA0NDM00zU2MLJggbMNIzgYuIqLswwMDM3NjU04GRz8EvPyCxKLSjKTc1L1A_JzKlNzUpNLioCMklQF5_zcgpzUitRihbT8IgWnzPzczNxUoFKgRF5xSVFpckkxDwNrWmJOcSovlOZmUHJzDXH20M0vLsmML07OLElNzkjOz8sDmhpvaGFkbm5uZkyUIgBbFTuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoparticle/Polyelectrolyte Complexes for Biomimetic Constructs</title><source>Access via Wiley Online Library</source><creator>Yin, Yixuan ; Liu, Tan ; Wang, Beibei ; Yin, Bangqi ; Yang, Yang ; Russell, Thomas P. ; Shi, Shaowei</creator><creatorcontrib>Yin, Yixuan ; Liu, Tan ; Wang, Beibei ; Yin, Bangqi ; Yang, Yang ; Russell, Thomas P. ; Shi, Shaowei</creatorcontrib><description>Abstract Constructing all‐aqueous systems with tailored geometries can generate a new class of biomimetic materials, a fascinating but challenging goal to achieve. Here, by taking advantage of the interfacial complexation of a polyelectrolyte (PE) and cellulose nanocrystals (CNCs), a unique interfacial PE/CNC complex is demonstrated for the stabilization of aqueous two‐phase systems and for the fabrication of all‐aqueous double emulsions and 3D constructs. The thickness of PE/CNC complex can be effectively adjusted by tuning the osmotic stress imbalance between the two aqueous phases and, during the formation and thickening of PE/CNC complex, individual assemblies can be connected to design hierarchical all‐aqueous structures. This new platform affords tremendous potential for engineering biomimetic constructs with advanced functionality, that can be used for chemical separation, delivery, and biphasic cascading reaction vessels.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley &amp; Sons)</publisher><ispartof>Advanced functional materials, 2021-10, Vol.32 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000163845826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1827776$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Yixuan</creatorcontrib><creatorcontrib>Liu, Tan</creatorcontrib><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Yin, Bangqi</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><creatorcontrib>Shi, Shaowei</creatorcontrib><title>Nanoparticle/Polyelectrolyte Complexes for Biomimetic Constructs</title><title>Advanced functional materials</title><description>Abstract Constructing all‐aqueous systems with tailored geometries can generate a new class of biomimetic materials, a fascinating but challenging goal to achieve. Here, by taking advantage of the interfacial complexation of a polyelectrolyte (PE) and cellulose nanocrystals (CNCs), a unique interfacial PE/CNC complex is demonstrated for the stabilization of aqueous two‐phase systems and for the fabrication of all‐aqueous double emulsions and 3D constructs. The thickness of PE/CNC complex can be effectively adjusted by tuning the osmotic stress imbalance between the two aqueous phases and, during the formation and thickening of PE/CNC complex, individual assemblies can be connected to design hierarchical all‐aqueous structures. This new platform affords tremendous potential for engineering biomimetic constructs with advanced functionality, that can be used for chemical separation, delivery, and biphasic cascading reaction vessels.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDM00zU2MLJggbMNIzgYuIqLswwMDM3NjU04GRz8EvPyCxKLSjKTc1L1A_JzKlNzUpNLioCMklQF5_zcgpzUitRihbT8IgWnzPzczNxUoFKgRF5xSVFpckkxDwNrWmJOcSovlOZmUHJzDXH20M0vLsmML07OLElNzkjOz8sDmhpvaGFkbm5uZkyUIgBbFTuQ</recordid><startdate>20211027</startdate><enddate>20211027</enddate><creator>Yin, Yixuan</creator><creator>Liu, Tan</creator><creator>Wang, Beibei</creator><creator>Yin, Bangqi</creator><creator>Yang, Yang</creator><creator>Russell, Thomas P.</creator><creator>Shi, Shaowei</creator><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000163845826</orcidid></search><sort><creationdate>20211027</creationdate><title>Nanoparticle/Polyelectrolyte Complexes for Biomimetic Constructs</title><author>Yin, Yixuan ; Liu, Tan ; Wang, Beibei ; Yin, Bangqi ; Yang, Yang ; Russell, Thomas P. ; Shi, Shaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18277763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Yixuan</creatorcontrib><creatorcontrib>Liu, Tan</creatorcontrib><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Yin, Bangqi</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><creatorcontrib>Shi, Shaowei</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Yixuan</au><au>Liu, Tan</au><au>Wang, Beibei</au><au>Yin, Bangqi</au><au>Yang, Yang</au><au>Russell, Thomas P.</au><au>Shi, Shaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle/Polyelectrolyte Complexes for Biomimetic Constructs</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-27</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Abstract Constructing all‐aqueous systems with tailored geometries can generate a new class of biomimetic materials, a fascinating but challenging goal to achieve. Here, by taking advantage of the interfacial complexation of a polyelectrolyte (PE) and cellulose nanocrystals (CNCs), a unique interfacial PE/CNC complex is demonstrated for the stabilization of aqueous two‐phase systems and for the fabrication of all‐aqueous double emulsions and 3D constructs. The thickness of PE/CNC complex can be effectively adjusted by tuning the osmotic stress imbalance between the two aqueous phases and, during the formation and thickening of PE/CNC complex, individual assemblies can be connected to design hierarchical all‐aqueous structures. This new platform affords tremendous potential for engineering biomimetic constructs with advanced functionality, that can be used for chemical separation, delivery, and biphasic cascading reaction vessels.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley &amp; Sons)</pub><orcidid>https://orcid.org/0000000163845826</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-10, Vol.32 (6)
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1827776
source Access via Wiley Online Library
title Nanoparticle/Polyelectrolyte Complexes for Biomimetic Constructs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle/Polyelectrolyte%20Complexes%20for%20Biomimetic%20Constructs&rft.jtitle=Advanced%20functional%20materials&rft.au=Yin,%20Yixuan&rft.date=2021-10-27&rft.volume=32&rft.issue=6&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/&rft_dat=%3Costi%3E1827776%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true