Scale‐Bridging in Three‐Dimensional Fracture Networks: Characterizing the Effects of Variable Fracture Apertures on Network‐Scale Flow Channelization

We incorporate observations of real fracture aperture variability observed in laboratory experiments into an ensemble of three‐dimensional discrete fracture network (DFN) simulations to characterize how variations of this micro‐scale feature can influence flow and transport behavior at the network s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2021-10, Vol.48 (19), p.n/a
Hauptverfasser: Hyman, Jeffrey D., Sweeney, Matthew R., Frash, Luke P., Carey, J. William, Viswanathan, Hari S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Geophysical research letters
container_volume 48
creator Hyman, Jeffrey D.
Sweeney, Matthew R.
Frash, Luke P.
Carey, J. William
Viswanathan, Hari S.
description We incorporate observations of real fracture aperture variability observed in laboratory experiments into an ensemble of three‐dimensional discrete fracture network (DFN) simulations to characterize how variations of this micro‐scale feature can influence flow and transport behavior at the network scale. A shear fracture is created within a Marcellus shale sample, and the fracture aperture is measured using a triaxial direct‐shear device coupled with real‐time X‐ray imaging at in‐situ stress conditions. We construct an ensemble of fracture networks based on natural fractures in Marcellus shale and project regions of the experimental aperture field onto each fracture in the networks. Our calculations demonstrate that the degree of flow channelization, a network‐scale flow field structure, is dramatically increased by local changes in the aperture field that in turn affects flow and transport properties. Plain Language Summary Fluid flow and solute transport through subsurface fractured media are inherently multi‐scale phenomena. Individual fractures connect to form complicated networks where relevant length scales span multiple orders of magnitude. In this letter, we address a long‐standing question in this research area regarding the relative impact of micro‐scale heterogeneity of fracture roughness, that is, internal aperture variability, on flow and transport at the network macro‐scale. To do so, we developed a methodology to incorporate real apertures obtained from in‐situ observations of dynamically fractured laboratory specimens into three‐dimensional discrete fracture network simulations for the first time. This methodology allows us to characterize how variations in fracture aperture can lead to increased flow channelization at the network scale, a phenomenon that we refer to as scale‐bridging. Our results show that this natural aperture variability not only modifies the local flow field within a single fracture but can re‐structure the global flow field of the entire network. In turn, the distribution of solute transport behavior is drastically modified, the networks' active surface area is drastically decreased, and the degree of flow channelization is markedly increased compared to reference networks that use equivalent smooth fractures. Key Points We incorporate X‐ray imaged fracture apertures, obtained at high‐stress in‐situ conditions, into 3D DFN flow and transport simulations We observe the effects of incorporating real aperture data for fra
doi_str_mv 10.1029/2021GL094400
format Article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1825124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GRL63069</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3669-a3d6a3a83ecaede1788f98faecf0c1f9a57cf4da570c1ac59933f9157dc07de73</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxiMEEmNw4wEizgycpv_CbYxtIFUgweBahdTZAl07JUXTduIRuPN2PAkpA8GJS2x_-fmzZUIOGZwwCMRpAAEbZyDCEGCLdJhPeilAsk064NVeGiTxLtlz7gkAOHDWIe93Spb48fp2bk0xNdWUmopOZhZb7cLMsXKmrmRJR1aq5sUivcZmWdtnd0YHM9mKaM26bWxmSIdao2ocrTV9kNbIxxJ_O_sLtG3iv6sfGz_lawM6Kutl61hVWJq1bPzUfbKjZenw4Dt2yf1oOBlc9rKb8dWgn_Ukj2Ph3yKWXKYclcQCWZKmWqRaotKgmBYySpQOCx98KVUkBOdasCgpFCQFJrxLjja-tWtM7pRpUM1U7TdRTc7SIGJB6KHjDaRs7ZxFnS-smUu7yhnk7fXzv9f3eLDBl6bE1b9sPr7NYg6x4J-iG4yE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scale‐Bridging in Three‐Dimensional Fracture Networks: Characterizing the Effects of Variable Fracture Apertures on Network‐Scale Flow Channelization</title><source>Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hyman, Jeffrey D. ; Sweeney, Matthew R. ; Frash, Luke P. ; Carey, J. William ; Viswanathan, Hari S.</creator><creatorcontrib>Hyman, Jeffrey D. ; Sweeney, Matthew R. ; Frash, Luke P. ; Carey, J. William ; Viswanathan, Hari S.</creatorcontrib><description>We incorporate observations of real fracture aperture variability observed in laboratory experiments into an ensemble of three‐dimensional discrete fracture network (DFN) simulations to characterize how variations of this micro‐scale feature can influence flow and transport behavior at the network scale. A shear fracture is created within a Marcellus shale sample, and the fracture aperture is measured using a triaxial direct‐shear device coupled with real‐time X‐ray imaging at in‐situ stress conditions. We construct an ensemble of fracture networks based on natural fractures in Marcellus shale and project regions of the experimental aperture field onto each fracture in the networks. Our calculations demonstrate that the degree of flow channelization, a network‐scale flow field structure, is dramatically increased by local changes in the aperture field that in turn affects flow and transport properties. Plain Language Summary Fluid flow and solute transport through subsurface fractured media are inherently multi‐scale phenomena. Individual fractures connect to form complicated networks where relevant length scales span multiple orders of magnitude. In this letter, we address a long‐standing question in this research area regarding the relative impact of micro‐scale heterogeneity of fracture roughness, that is, internal aperture variability, on flow and transport at the network macro‐scale. To do so, we developed a methodology to incorporate real apertures obtained from in‐situ observations of dynamically fractured laboratory specimens into three‐dimensional discrete fracture network simulations for the first time. This methodology allows us to characterize how variations in fracture aperture can lead to increased flow channelization at the network scale, a phenomenon that we refer to as scale‐bridging. Our results show that this natural aperture variability not only modifies the local flow field within a single fracture but can re‐structure the global flow field of the entire network. In turn, the distribution of solute transport behavior is drastically modified, the networks' active surface area is drastically decreased, and the degree of flow channelization is markedly increased compared to reference networks that use equivalent smooth fractures. Key Points We incorporate X‐ray imaged fracture apertures, obtained at high‐stress in‐situ conditions, into 3D DFN flow and transport simulations We observe the effects of incorporating real aperture data for fractures on network‐scale flow and transport properties for the first time Inclusion of aperture variability leads to scale‐bridging, where this small‐scale feature reorganizes the flow field at the network scale</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2021GL094400</identifier><language>eng</language><publisher>United States: American Geophysical Union (AGU)</publisher><subject>fracture aperture variability ; fracture networks ; numerical methods ; subsurface flow and transport</subject><ispartof>Geophysical research letters, 2021-10, Vol.48 (19), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3669-a3d6a3a83ecaede1788f98faecf0c1f9a57cf4da570c1ac59933f9157dc07de73</citedby><cites>FETCH-LOGICAL-a3669-a3d6a3a83ecaede1788f98faecf0c1f9a57cf4da570c1ac59933f9157dc07de73</cites><orcidid>0000-0002-5160-4176 ; 0000-0002-5424-4698 ; 0000-0002-1178-9647 ; 0000-0002-4224-2847 ; 0000-0001-8488-2925 ; 0000000251604176 ; 0000000242242847 ; 0000000184882925 ; 0000000254244698 ; 0000000211789647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021GL094400$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021GL094400$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1825124$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyman, Jeffrey D.</creatorcontrib><creatorcontrib>Sweeney, Matthew R.</creatorcontrib><creatorcontrib>Frash, Luke P.</creatorcontrib><creatorcontrib>Carey, J. William</creatorcontrib><creatorcontrib>Viswanathan, Hari S.</creatorcontrib><title>Scale‐Bridging in Three‐Dimensional Fracture Networks: Characterizing the Effects of Variable Fracture Apertures on Network‐Scale Flow Channelization</title><title>Geophysical research letters</title><description>We incorporate observations of real fracture aperture variability observed in laboratory experiments into an ensemble of three‐dimensional discrete fracture network (DFN) simulations to characterize how variations of this micro‐scale feature can influence flow and transport behavior at the network scale. A shear fracture is created within a Marcellus shale sample, and the fracture aperture is measured using a triaxial direct‐shear device coupled with real‐time X‐ray imaging at in‐situ stress conditions. We construct an ensemble of fracture networks based on natural fractures in Marcellus shale and project regions of the experimental aperture field onto each fracture in the networks. Our calculations demonstrate that the degree of flow channelization, a network‐scale flow field structure, is dramatically increased by local changes in the aperture field that in turn affects flow and transport properties. Plain Language Summary Fluid flow and solute transport through subsurface fractured media are inherently multi‐scale phenomena. Individual fractures connect to form complicated networks where relevant length scales span multiple orders of magnitude. In this letter, we address a long‐standing question in this research area regarding the relative impact of micro‐scale heterogeneity of fracture roughness, that is, internal aperture variability, on flow and transport at the network macro‐scale. To do so, we developed a methodology to incorporate real apertures obtained from in‐situ observations of dynamically fractured laboratory specimens into three‐dimensional discrete fracture network simulations for the first time. This methodology allows us to characterize how variations in fracture aperture can lead to increased flow channelization at the network scale, a phenomenon that we refer to as scale‐bridging. Our results show that this natural aperture variability not only modifies the local flow field within a single fracture but can re‐structure the global flow field of the entire network. In turn, the distribution of solute transport behavior is drastically modified, the networks' active surface area is drastically decreased, and the degree of flow channelization is markedly increased compared to reference networks that use equivalent smooth fractures. Key Points We incorporate X‐ray imaged fracture apertures, obtained at high‐stress in‐situ conditions, into 3D DFN flow and transport simulations We observe the effects of incorporating real aperture data for fractures on network‐scale flow and transport properties for the first time Inclusion of aperture variability leads to scale‐bridging, where this small‐scale feature reorganizes the flow field at the network scale</description><subject>fracture aperture variability</subject><subject>fracture networks</subject><subject>numerical methods</subject><subject>subsurface flow and transport</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxiMEEmNw4wEizgycpv_CbYxtIFUgweBahdTZAl07JUXTduIRuPN2PAkpA8GJS2x_-fmzZUIOGZwwCMRpAAEbZyDCEGCLdJhPeilAsk064NVeGiTxLtlz7gkAOHDWIe93Spb48fp2bk0xNdWUmopOZhZb7cLMsXKmrmRJR1aq5sUivcZmWdtnd0YHM9mKaM26bWxmSIdao2ocrTV9kNbIxxJ_O_sLtG3iv6sfGz_lawM6Kutl61hVWJq1bPzUfbKjZenw4Dt2yf1oOBlc9rKb8dWgn_Ukj2Ph3yKWXKYclcQCWZKmWqRaotKgmBYySpQOCx98KVUkBOdasCgpFCQFJrxLjja-tWtM7pRpUM1U7TdRTc7SIGJB6KHjDaRs7ZxFnS-smUu7yhnk7fXzv9f3eLDBl6bE1b9sPr7NYg6x4J-iG4yE</recordid><startdate>20211016</startdate><enddate>20211016</enddate><creator>Hyman, Jeffrey D.</creator><creator>Sweeney, Matthew R.</creator><creator>Frash, Luke P.</creator><creator>Carey, J. William</creator><creator>Viswanathan, Hari S.</creator><general>American Geophysical Union (AGU)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5160-4176</orcidid><orcidid>https://orcid.org/0000-0002-5424-4698</orcidid><orcidid>https://orcid.org/0000-0002-1178-9647</orcidid><orcidid>https://orcid.org/0000-0002-4224-2847</orcidid><orcidid>https://orcid.org/0000-0001-8488-2925</orcidid><orcidid>https://orcid.org/0000000251604176</orcidid><orcidid>https://orcid.org/0000000242242847</orcidid><orcidid>https://orcid.org/0000000184882925</orcidid><orcidid>https://orcid.org/0000000254244698</orcidid><orcidid>https://orcid.org/0000000211789647</orcidid></search><sort><creationdate>20211016</creationdate><title>Scale‐Bridging in Three‐Dimensional Fracture Networks: Characterizing the Effects of Variable Fracture Apertures on Network‐Scale Flow Channelization</title><author>Hyman, Jeffrey D. ; Sweeney, Matthew R. ; Frash, Luke P. ; Carey, J. William ; Viswanathan, Hari S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3669-a3d6a3a83ecaede1788f98faecf0c1f9a57cf4da570c1ac59933f9157dc07de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>fracture aperture variability</topic><topic>fracture networks</topic><topic>numerical methods</topic><topic>subsurface flow and transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyman, Jeffrey D.</creatorcontrib><creatorcontrib>Sweeney, Matthew R.</creatorcontrib><creatorcontrib>Frash, Luke P.</creatorcontrib><creatorcontrib>Carey, J. William</creatorcontrib><creatorcontrib>Viswanathan, Hari S.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyman, Jeffrey D.</au><au>Sweeney, Matthew R.</au><au>Frash, Luke P.</au><au>Carey, J. William</au><au>Viswanathan, Hari S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scale‐Bridging in Three‐Dimensional Fracture Networks: Characterizing the Effects of Variable Fracture Apertures on Network‐Scale Flow Channelization</atitle><jtitle>Geophysical research letters</jtitle><date>2021-10-16</date><risdate>2021</risdate><volume>48</volume><issue>19</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We incorporate observations of real fracture aperture variability observed in laboratory experiments into an ensemble of three‐dimensional discrete fracture network (DFN) simulations to characterize how variations of this micro‐scale feature can influence flow and transport behavior at the network scale. A shear fracture is created within a Marcellus shale sample, and the fracture aperture is measured using a triaxial direct‐shear device coupled with real‐time X‐ray imaging at in‐situ stress conditions. We construct an ensemble of fracture networks based on natural fractures in Marcellus shale and project regions of the experimental aperture field onto each fracture in the networks. Our calculations demonstrate that the degree of flow channelization, a network‐scale flow field structure, is dramatically increased by local changes in the aperture field that in turn affects flow and transport properties. Plain Language Summary Fluid flow and solute transport through subsurface fractured media are inherently multi‐scale phenomena. Individual fractures connect to form complicated networks where relevant length scales span multiple orders of magnitude. In this letter, we address a long‐standing question in this research area regarding the relative impact of micro‐scale heterogeneity of fracture roughness, that is, internal aperture variability, on flow and transport at the network macro‐scale. To do so, we developed a methodology to incorporate real apertures obtained from in‐situ observations of dynamically fractured laboratory specimens into three‐dimensional discrete fracture network simulations for the first time. This methodology allows us to characterize how variations in fracture aperture can lead to increased flow channelization at the network scale, a phenomenon that we refer to as scale‐bridging. Our results show that this natural aperture variability not only modifies the local flow field within a single fracture but can re‐structure the global flow field of the entire network. In turn, the distribution of solute transport behavior is drastically modified, the networks' active surface area is drastically decreased, and the degree of flow channelization is markedly increased compared to reference networks that use equivalent smooth fractures. Key Points We incorporate X‐ray imaged fracture apertures, obtained at high‐stress in‐situ conditions, into 3D DFN flow and transport simulations We observe the effects of incorporating real aperture data for fractures on network‐scale flow and transport properties for the first time Inclusion of aperture variability leads to scale‐bridging, where this small‐scale feature reorganizes the flow field at the network scale</abstract><cop>United States</cop><pub>American Geophysical Union (AGU)</pub><doi>10.1029/2021GL094400</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5160-4176</orcidid><orcidid>https://orcid.org/0000-0002-5424-4698</orcidid><orcidid>https://orcid.org/0000-0002-1178-9647</orcidid><orcidid>https://orcid.org/0000-0002-4224-2847</orcidid><orcidid>https://orcid.org/0000-0001-8488-2925</orcidid><orcidid>https://orcid.org/0000000251604176</orcidid><orcidid>https://orcid.org/0000000242242847</orcidid><orcidid>https://orcid.org/0000000184882925</orcidid><orcidid>https://orcid.org/0000000254244698</orcidid><orcidid>https://orcid.org/0000000211789647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2021-10, Vol.48 (19), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_osti_scitechconnect_1825124
source Wiley Online Library; Wiley-Blackwell AGU Digital Archive; EZB-FREE-00999 freely available EZB journals
subjects fracture aperture variability
fracture networks
numerical methods
subsurface flow and transport
title Scale‐Bridging in Three‐Dimensional Fracture Networks: Characterizing the Effects of Variable Fracture Apertures on Network‐Scale Flow Channelization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scale%E2%80%90Bridging%20in%20Three%E2%80%90Dimensional%20Fracture%20Networks:%20Characterizing%20the%20Effects%20of%20Variable%20Fracture%20Apertures%20on%20Network%E2%80%90Scale%20Flow%20Channelization&rft.jtitle=Geophysical%20research%20letters&rft.au=Hyman,%20Jeffrey%20D.&rft.date=2021-10-16&rft.volume=48&rft.issue=19&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2021GL094400&rft_dat=%3Cwiley_osti_%3EGRL63069%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true