First application of a digital mirror Langmuir probe for real-time plasma diagnosis
For the first time, a digital Mirror Langmuir Probe (MLP) has successfully sampled plasma temperature, ion saturation current, and floating potential together on a single probe tip in real time in a radio-frequency driven helicon linear plasma device. This is accomplished by feedback control of the...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2021-10, Vol.92 (10), p.103502-103502, Article 103502 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the first time, a digital Mirror Langmuir Probe (MLP) has successfully sampled plasma temperature, ion saturation current, and floating potential together on a single probe tip in real time in a radio-frequency driven helicon linear plasma device. This is accomplished by feedback control of the bias sweep to ensure a good fit to I–V characteristics with a high frequency, high power digital amplifier, and field-programmable gate array controller. Measurements taken by the MLP were validated by a low speed I–V characteristic manually collected during static plasma conditions. Plasma fluctuations, induced by varying the axial magnetic field (f̃ = 10 Hz), were also successfully monitored with the MLP. Further refinement of the digital MLP pushes it toward a turn-key system that minimizes the time to deployment and lessens the learning curve, positioning the digital MLP as a capable diagnostic for the study of low radio-frequency plasma physics. These demonstrations bolster confidence in fielding such digital MLP diagnostics in magnetic confinement experiments with high spatial and adequate temporal resolution, such as edge plasma, scrape-off layer, and divertor probes. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0057318 |