Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries
Prussian blue analogs (PBAs) are promising cathode materials for many next‐generation metal‐ion batteries due to their exceptional electrochemical performance. Their oxygen‐free structure avoids a common battery thermal runaway pathway which requires O2 liberation. Herein, the thermal runaway mechan...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-11, Vol.11 (42), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Li, Zheng Dadsetan, Mehran Gao, Junxian Zhang, Sensen Cai, Lirong Naseri, Ali Jimenez‐Castaneda, Martha E. Filley, Timothy Miller, Jeffrey T. Thomson, Murray J. Pol, Vilas G. |
description | Prussian blue analogs (PBAs) are promising cathode materials for many next‐generation metal‐ion batteries due to their exceptional electrochemical performance. Their oxygen‐free structure avoids a common battery thermal runaway pathway which requires O2 liberation. Herein, the thermal runaway mechanisms of PBAs are studied from the level of material and full cell in nonaqueous sodium‐ and potassium‐ion batteries (SIBs and KIBs). Their hidden safety issue and a novel runaway mechanism that requires no oxygen evolution are identified. The cyanide groups are released (≈51.4 wt%) as toxic cyanides above 200 °C, which also exothermically react with the electrolyte and cause the runaway. The cyanide gas generation mechanism is proposed as cathode hydrolytic disproportionation by Raman spectroscopy, X‐ray photoelectron spectroscopy, in situ environmental transmission electron microscopy, and operando synchrotron X‐ray diffraction studies. In addition, full‐cell level calorimetric studies reveal mitigated heat generation but lower initiation temperature of runaway from such SIBs and KIBs than conventional LiCoO2–graphite system. These results change how PBA materials are evaluated from a safety standpoint, suggesting that they cannot be regarded as safe cathodes. They also indicate the correlations between thermal safety and their crystal defects or trapped water content. The proposed thermal runaway mechanism provides insights to assist in the building of safer next‐generation batteries.
Prussian blue analog (PBA) cathodes are revealed to be thermally unsafe for sodium‐ and potassium‐ion batteries despite their oxygen‐free structure. The proposed mechanism suggests that toxic cyanide gases are liberated at high temperatures, which gives rise to battery thermal runaway by reacting with the electrolyte. Mechanistic determination studies provide strategies to improve the overall thermal safety of PBA‐based batteries. |
doi_str_mv | 10.1002/aenm.202101764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1824892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595869274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4104-f41d5a7ca962c8d78c76ec1c9f88ed8e3becd2343c9c2628593af2affd44f58e3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EElXplbMF5xbbcRL72FblIZWCoJwt46xJqjQutgPqvyclCI7sZVeab1ajQeickgklhF1paLYTRhglNM_4ERrQjPJxJjg5_r0TdopGIWxIN1xSkiQDtH6CD9B11bzhWAJel-C3usbP2kLcY2fxo29DqHSDZ3ULeK5j6QrA1vlvxuOVa_R7C64NeKZjBF9BOEMnVtcBRj97iF6uF-v57Xj5cHM3ny7HhlPCx5bTItW50TJjRhS5MHkGhhpphYBCQPIKpmAJT4w0LGMilYm2TFtbcG7TTh-ii_6vC7FSwVQRTGlc04CJigrGhWQddNlDO--6oCGqjWt90-VSLJWpyCTLeUdNesp4F4IHq3a-2mq_V5SoQ8Pq0LD6bbgzyN7wWdWw_4dW08Xq_s_7BY6vfyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595869274</pqid></control><display><type>article</type><title>Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Zheng ; Dadsetan, Mehran ; Gao, Junxian ; Zhang, Sensen ; Cai, Lirong ; Naseri, Ali ; Jimenez‐Castaneda, Martha E. ; Filley, Timothy ; Miller, Jeffrey T. ; Thomson, Murray J. ; Pol, Vilas G.</creator><creatorcontrib>Li, Zheng ; Dadsetan, Mehran ; Gao, Junxian ; Zhang, Sensen ; Cai, Lirong ; Naseri, Ali ; Jimenez‐Castaneda, Martha E. ; Filley, Timothy ; Miller, Jeffrey T. ; Thomson, Murray J. ; Pol, Vilas G.</creatorcontrib><description>Prussian blue analogs (PBAs) are promising cathode materials for many next‐generation metal‐ion batteries due to their exceptional electrochemical performance. Their oxygen‐free structure avoids a common battery thermal runaway pathway which requires O2 liberation. Herein, the thermal runaway mechanisms of PBAs are studied from the level of material and full cell in nonaqueous sodium‐ and potassium‐ion batteries (SIBs and KIBs). Their hidden safety issue and a novel runaway mechanism that requires no oxygen evolution are identified. The cyanide groups are released (≈51.4 wt%) as toxic cyanides above 200 °C, which also exothermically react with the electrolyte and cause the runaway. The cyanide gas generation mechanism is proposed as cathode hydrolytic disproportionation by Raman spectroscopy, X‐ray photoelectron spectroscopy, in situ environmental transmission electron microscopy, and operando synchrotron X‐ray diffraction studies. In addition, full‐cell level calorimetric studies reveal mitigated heat generation but lower initiation temperature of runaway from such SIBs and KIBs than conventional LiCoO2–graphite system. These results change how PBA materials are evaluated from a safety standpoint, suggesting that they cannot be regarded as safe cathodes. They also indicate the correlations between thermal safety and their crystal defects or trapped water content. The proposed thermal runaway mechanism provides insights to assist in the building of safer next‐generation batteries.
Prussian blue analog (PBA) cathodes are revealed to be thermally unsafe for sodium‐ and potassium‐ion batteries despite their oxygen‐free structure. The proposed mechanism suggests that toxic cyanide gases are liberated at high temperatures, which gives rise to battery thermal runaway by reacting with the electrolyte. Mechanistic determination studies provide strategies to improve the overall thermal safety of PBA‐based batteries.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202101764</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>battery safety ; Cathodes ; Chemical evolution ; Crystal defects ; Disproportionation ; Electrochemical analysis ; Electrode materials ; Exothermic reactions ; Heat generation ; Moisture content ; Photoelectrons ; Pigments ; potassium‐ion batteries ; Prussian blue cathodes ; Raman spectroscopy ; Rechargeable batteries ; Safety ; sodium‐ion batteries ; Spectrum analysis ; Synchrotrons ; Thermal runaway</subject><ispartof>Advanced energy materials, 2021-11, Vol.11 (42), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4104-f41d5a7ca962c8d78c76ec1c9f88ed8e3becd2343c9c2628593af2affd44f58e3</citedby><cites>FETCH-LOGICAL-c4104-f41d5a7ca962c8d78c76ec1c9f88ed8e3becd2343c9c2628593af2affd44f58e3</cites><orcidid>0000-0002-4866-117X ; 000000024866117X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202101764$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202101764$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1824892$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Dadsetan, Mehran</creatorcontrib><creatorcontrib>Gao, Junxian</creatorcontrib><creatorcontrib>Zhang, Sensen</creatorcontrib><creatorcontrib>Cai, Lirong</creatorcontrib><creatorcontrib>Naseri, Ali</creatorcontrib><creatorcontrib>Jimenez‐Castaneda, Martha E.</creatorcontrib><creatorcontrib>Filley, Timothy</creatorcontrib><creatorcontrib>Miller, Jeffrey T.</creatorcontrib><creatorcontrib>Thomson, Murray J.</creatorcontrib><creatorcontrib>Pol, Vilas G.</creatorcontrib><title>Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries</title><title>Advanced energy materials</title><description>Prussian blue analogs (PBAs) are promising cathode materials for many next‐generation metal‐ion batteries due to their exceptional electrochemical performance. Their oxygen‐free structure avoids a common battery thermal runaway pathway which requires O2 liberation. Herein, the thermal runaway mechanisms of PBAs are studied from the level of material and full cell in nonaqueous sodium‐ and potassium‐ion batteries (SIBs and KIBs). Their hidden safety issue and a novel runaway mechanism that requires no oxygen evolution are identified. The cyanide groups are released (≈51.4 wt%) as toxic cyanides above 200 °C, which also exothermically react with the electrolyte and cause the runaway. The cyanide gas generation mechanism is proposed as cathode hydrolytic disproportionation by Raman spectroscopy, X‐ray photoelectron spectroscopy, in situ environmental transmission electron microscopy, and operando synchrotron X‐ray diffraction studies. In addition, full‐cell level calorimetric studies reveal mitigated heat generation but lower initiation temperature of runaway from such SIBs and KIBs than conventional LiCoO2–graphite system. These results change how PBA materials are evaluated from a safety standpoint, suggesting that they cannot be regarded as safe cathodes. They also indicate the correlations between thermal safety and their crystal defects or trapped water content. The proposed thermal runaway mechanism provides insights to assist in the building of safer next‐generation batteries.
Prussian blue analog (PBA) cathodes are revealed to be thermally unsafe for sodium‐ and potassium‐ion batteries despite their oxygen‐free structure. The proposed mechanism suggests that toxic cyanide gases are liberated at high temperatures, which gives rise to battery thermal runaway by reacting with the electrolyte. Mechanistic determination studies provide strategies to improve the overall thermal safety of PBA‐based batteries.</description><subject>battery safety</subject><subject>Cathodes</subject><subject>Chemical evolution</subject><subject>Crystal defects</subject><subject>Disproportionation</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Exothermic reactions</subject><subject>Heat generation</subject><subject>Moisture content</subject><subject>Photoelectrons</subject><subject>Pigments</subject><subject>potassium‐ion batteries</subject><subject>Prussian blue cathodes</subject><subject>Raman spectroscopy</subject><subject>Rechargeable batteries</subject><subject>Safety</subject><subject>sodium‐ion batteries</subject><subject>Spectrum analysis</subject><subject>Synchrotrons</subject><subject>Thermal runaway</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EElXplbMF5xbbcRL72FblIZWCoJwt46xJqjQutgPqvyclCI7sZVeab1ajQeickgklhF1paLYTRhglNM_4ERrQjPJxJjg5_r0TdopGIWxIN1xSkiQDtH6CD9B11bzhWAJel-C3usbP2kLcY2fxo29DqHSDZ3ULeK5j6QrA1vlvxuOVa_R7C64NeKZjBF9BOEMnVtcBRj97iF6uF-v57Xj5cHM3ny7HhlPCx5bTItW50TJjRhS5MHkGhhpphYBCQPIKpmAJT4w0LGMilYm2TFtbcG7TTh-ii_6vC7FSwVQRTGlc04CJigrGhWQddNlDO--6oCGqjWt90-VSLJWpyCTLeUdNesp4F4IHq3a-2mq_V5SoQ8Pq0LD6bbgzyN7wWdWw_4dW08Xq_s_7BY6vfyw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Li, Zheng</creator><creator>Dadsetan, Mehran</creator><creator>Gao, Junxian</creator><creator>Zhang, Sensen</creator><creator>Cai, Lirong</creator><creator>Naseri, Ali</creator><creator>Jimenez‐Castaneda, Martha E.</creator><creator>Filley, Timothy</creator><creator>Miller, Jeffrey T.</creator><creator>Thomson, Murray J.</creator><creator>Pol, Vilas G.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4866-117X</orcidid><orcidid>https://orcid.org/000000024866117X</orcidid></search><sort><creationdate>20211101</creationdate><title>Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries</title><author>Li, Zheng ; Dadsetan, Mehran ; Gao, Junxian ; Zhang, Sensen ; Cai, Lirong ; Naseri, Ali ; Jimenez‐Castaneda, Martha E. ; Filley, Timothy ; Miller, Jeffrey T. ; Thomson, Murray J. ; Pol, Vilas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4104-f41d5a7ca962c8d78c76ec1c9f88ed8e3becd2343c9c2628593af2affd44f58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>battery safety</topic><topic>Cathodes</topic><topic>Chemical evolution</topic><topic>Crystal defects</topic><topic>Disproportionation</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Exothermic reactions</topic><topic>Heat generation</topic><topic>Moisture content</topic><topic>Photoelectrons</topic><topic>Pigments</topic><topic>potassium‐ion batteries</topic><topic>Prussian blue cathodes</topic><topic>Raman spectroscopy</topic><topic>Rechargeable batteries</topic><topic>Safety</topic><topic>sodium‐ion batteries</topic><topic>Spectrum analysis</topic><topic>Synchrotrons</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Dadsetan, Mehran</creatorcontrib><creatorcontrib>Gao, Junxian</creatorcontrib><creatorcontrib>Zhang, Sensen</creatorcontrib><creatorcontrib>Cai, Lirong</creatorcontrib><creatorcontrib>Naseri, Ali</creatorcontrib><creatorcontrib>Jimenez‐Castaneda, Martha E.</creatorcontrib><creatorcontrib>Filley, Timothy</creatorcontrib><creatorcontrib>Miller, Jeffrey T.</creatorcontrib><creatorcontrib>Thomson, Murray J.</creatorcontrib><creatorcontrib>Pol, Vilas G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zheng</au><au>Dadsetan, Mehran</au><au>Gao, Junxian</au><au>Zhang, Sensen</au><au>Cai, Lirong</au><au>Naseri, Ali</au><au>Jimenez‐Castaneda, Martha E.</au><au>Filley, Timothy</au><au>Miller, Jeffrey T.</au><au>Thomson, Murray J.</au><au>Pol, Vilas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>42</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Prussian blue analogs (PBAs) are promising cathode materials for many next‐generation metal‐ion batteries due to their exceptional electrochemical performance. Their oxygen‐free structure avoids a common battery thermal runaway pathway which requires O2 liberation. Herein, the thermal runaway mechanisms of PBAs are studied from the level of material and full cell in nonaqueous sodium‐ and potassium‐ion batteries (SIBs and KIBs). Their hidden safety issue and a novel runaway mechanism that requires no oxygen evolution are identified. The cyanide groups are released (≈51.4 wt%) as toxic cyanides above 200 °C, which also exothermically react with the electrolyte and cause the runaway. The cyanide gas generation mechanism is proposed as cathode hydrolytic disproportionation by Raman spectroscopy, X‐ray photoelectron spectroscopy, in situ environmental transmission electron microscopy, and operando synchrotron X‐ray diffraction studies. In addition, full‐cell level calorimetric studies reveal mitigated heat generation but lower initiation temperature of runaway from such SIBs and KIBs than conventional LiCoO2–graphite system. These results change how PBA materials are evaluated from a safety standpoint, suggesting that they cannot be regarded as safe cathodes. They also indicate the correlations between thermal safety and their crystal defects or trapped water content. The proposed thermal runaway mechanism provides insights to assist in the building of safer next‐generation batteries.
Prussian blue analog (PBA) cathodes are revealed to be thermally unsafe for sodium‐ and potassium‐ion batteries despite their oxygen‐free structure. The proposed mechanism suggests that toxic cyanide gases are liberated at high temperatures, which gives rise to battery thermal runaway by reacting with the electrolyte. Mechanistic determination studies provide strategies to improve the overall thermal safety of PBA‐based batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202101764</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4866-117X</orcidid><orcidid>https://orcid.org/000000024866117X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-11, Vol.11 (42), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1824892 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | battery safety Cathodes Chemical evolution Crystal defects Disproportionation Electrochemical analysis Electrode materials Exothermic reactions Heat generation Moisture content Photoelectrons Pigments potassium‐ion batteries Prussian blue cathodes Raman spectroscopy Rechargeable batteries Safety sodium‐ion batteries Spectrum analysis Synchrotrons Thermal runaway |
title | Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Thermal%20Safety%20of%20Prussian%20Blue%20Cathode%20for%20Safer%20Nonaqueous%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Li,%20Zheng&rft.date=2021-11-01&rft.volume=11&rft.issue=42&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202101764&rft_dat=%3Cproquest_osti_%3E2595869274%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595869274&rft_id=info:pmid/&rfr_iscdi=true |