Analytical continuation of matrix-valued functions: Carathéodory formalism
Finite-temperature quantum field theories are formulated in terms of Green's functions and self-energies on the Matsubara axis. In multiorbital systems, these quantities are related to positive semidefinite matrix-valued functions of the Carathéodory and Schur class. Analysis, interpretation, a...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2021-10, Vol.104 (16), Article 165111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Physical review. B |
container_volume | 104 |
creator | Fei, Jiani Yeh, Chia-Nan Zgid, Dominika Gull, Emanuel |
description | Finite-temperature quantum field theories are formulated in terms of Green's functions and self-energies on the Matsubara axis. In multiorbital systems, these quantities are related to positive semidefinite matrix-valued functions of the Carathéodory and Schur class. Analysis, interpretation, and evaluation of derived quantities such as real-frequency response functions requires analytic continuation of the off-diagonal elements to the real axis. We derive the criteria under which such functions exist for given Matsubara data and present an interpolation algorithm that intrinsically respects their mathematical properties. For small systems with precise Matsubara data, we find that the continuation exactly recovers all off-diagonal and diagonal elements. In real-materials systems, we show that the precision of the continuation is sufficient for the analytic continuation to commute with the Dyson equation, and we show that the truncation of the off-diagonal self-energy elements leads to considerable approximation artifacts. |
doi_str_mv | 10.1103/PhysRevB.104.165111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1824703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595140620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c19d3e82d67d416950daaa1057806ce1a6a76e9efabcc300f86c208d22f3b1c93</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EElXpCdhEsE6ZiRMnZlcq_kQlEIK15Tq2miqJi-1U5Eicg4uRKsBqRjNPo28eIecIc0SgVy-b3r_q_c0cIZ0jyxDxiEySlPGYc8aP__sMTsnM-y0AIAOeA5-Qp0Ur6z5UStaRsm2o2k6GyraRNVEjg6s-472sO11GpmvVYeOvo6V0Mmy-v2xpXR8Z6xpZV745IydG1l7PfuuUvN_dvi0f4tXz_eNysYpVyrIQK-Ql1UVSsrxMkQ2xSiklQpYXwJRGyWTONNdGrpWiAKZgKoGiTBJD16g4nZKL8a71oRJeVUGrzRC-1SoILJI0BzpAlyO0c_aj0z6Ire3c8KwXScYzTIElMFB0pJSz3jttxM5VjXS9QBAHu-LP7jBIxWiX_gDRNnAf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595140620</pqid></control><display><type>article</type><title>Analytical continuation of matrix-valued functions: Carathéodory formalism</title><source>American Physical Society Journals</source><creator>Fei, Jiani ; Yeh, Chia-Nan ; Zgid, Dominika ; Gull, Emanuel</creator><creatorcontrib>Fei, Jiani ; Yeh, Chia-Nan ; Zgid, Dominika ; Gull, Emanuel</creatorcontrib><description>Finite-temperature quantum field theories are formulated in terms of Green's functions and self-energies on the Matsubara axis. In multiorbital systems, these quantities are related to positive semidefinite matrix-valued functions of the Carathéodory and Schur class. Analysis, interpretation, and evaluation of derived quantities such as real-frequency response functions requires analytic continuation of the off-diagonal elements to the real axis. We derive the criteria under which such functions exist for given Matsubara data and present an interpolation algorithm that intrinsically respects their mathematical properties. For small systems with precise Matsubara data, we find that the continuation exactly recovers all off-diagonal and diagonal elements. In real-materials systems, we show that the precision of the continuation is sufficient for the analytic continuation to commute with the Dyson equation, and we show that the truncation of the off-diagonal self-energy elements leads to considerable approximation artifacts.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.165111</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Frequency response functions ; Green's functions ; Interpolation ; Mathematical analysis ; Matrices (mathematics) ; Quantum theory</subject><ispartof>Physical review. B, 2021-10, Vol.104 (16), Article 165111</ispartof><rights>Copyright American Physical Society Oct 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c19d3e82d67d416950daaa1057806ce1a6a76e9efabcc300f86c208d22f3b1c93</citedby><cites>FETCH-LOGICAL-c465t-c19d3e82d67d416950daaa1057806ce1a6a76e9efabcc300f86c208d22f3b1c93</cites><orcidid>0000-0002-6082-1260 ; 0000-0002-1733-8425 ; 0000000260821260 ; 0000000217338425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,2865,2866,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1824703$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fei, Jiani</creatorcontrib><creatorcontrib>Yeh, Chia-Nan</creatorcontrib><creatorcontrib>Zgid, Dominika</creatorcontrib><creatorcontrib>Gull, Emanuel</creatorcontrib><title>Analytical continuation of matrix-valued functions: Carathéodory formalism</title><title>Physical review. B</title><description>Finite-temperature quantum field theories are formulated in terms of Green's functions and self-energies on the Matsubara axis. In multiorbital systems, these quantities are related to positive semidefinite matrix-valued functions of the Carathéodory and Schur class. Analysis, interpretation, and evaluation of derived quantities such as real-frequency response functions requires analytic continuation of the off-diagonal elements to the real axis. We derive the criteria under which such functions exist for given Matsubara data and present an interpolation algorithm that intrinsically respects their mathematical properties. For small systems with precise Matsubara data, we find that the continuation exactly recovers all off-diagonal and diagonal elements. In real-materials systems, we show that the precision of the continuation is sufficient for the analytic continuation to commute with the Dyson equation, and we show that the truncation of the off-diagonal self-energy elements leads to considerable approximation artifacts.</description><subject>Algorithms</subject><subject>Frequency response functions</subject><subject>Green's functions</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Quantum theory</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQRi0EElXpCdhEsE6ZiRMnZlcq_kQlEIK15Tq2miqJi-1U5Eicg4uRKsBqRjNPo28eIecIc0SgVy-b3r_q_c0cIZ0jyxDxiEySlPGYc8aP__sMTsnM-y0AIAOeA5-Qp0Ur6z5UStaRsm2o2k6GyraRNVEjg6s-472sO11GpmvVYeOvo6V0Mmy-v2xpXR8Z6xpZV745IydG1l7PfuuUvN_dvi0f4tXz_eNysYpVyrIQK-Ql1UVSsrxMkQ2xSiklQpYXwJRGyWTONNdGrpWiAKZgKoGiTBJD16g4nZKL8a71oRJeVUGrzRC-1SoILJI0BzpAlyO0c_aj0z6Ire3c8KwXScYzTIElMFB0pJSz3jttxM5VjXS9QBAHu-LP7jBIxWiX_gDRNnAf</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Fei, Jiani</creator><creator>Yeh, Chia-Nan</creator><creator>Zgid, Dominika</creator><creator>Gull, Emanuel</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6082-1260</orcidid><orcidid>https://orcid.org/0000-0002-1733-8425</orcidid><orcidid>https://orcid.org/0000000260821260</orcidid><orcidid>https://orcid.org/0000000217338425</orcidid></search><sort><creationdate>20211006</creationdate><title>Analytical continuation of matrix-valued functions: Carathéodory formalism</title><author>Fei, Jiani ; Yeh, Chia-Nan ; Zgid, Dominika ; Gull, Emanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c19d3e82d67d416950daaa1057806ce1a6a76e9efabcc300f86c208d22f3b1c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Frequency response functions</topic><topic>Green's functions</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fei, Jiani</creatorcontrib><creatorcontrib>Yeh, Chia-Nan</creatorcontrib><creatorcontrib>Zgid, Dominika</creatorcontrib><creatorcontrib>Gull, Emanuel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fei, Jiani</au><au>Yeh, Chia-Nan</au><au>Zgid, Dominika</au><au>Gull, Emanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical continuation of matrix-valued functions: Carathéodory formalism</atitle><jtitle>Physical review. B</jtitle><date>2021-10-06</date><risdate>2021</risdate><volume>104</volume><issue>16</issue><artnum>165111</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Finite-temperature quantum field theories are formulated in terms of Green's functions and self-energies on the Matsubara axis. In multiorbital systems, these quantities are related to positive semidefinite matrix-valued functions of the Carathéodory and Schur class. Analysis, interpretation, and evaluation of derived quantities such as real-frequency response functions requires analytic continuation of the off-diagonal elements to the real axis. We derive the criteria under which such functions exist for given Matsubara data and present an interpolation algorithm that intrinsically respects their mathematical properties. For small systems with precise Matsubara data, we find that the continuation exactly recovers all off-diagonal and diagonal elements. In real-materials systems, we show that the precision of the continuation is sufficient for the analytic continuation to commute with the Dyson equation, and we show that the truncation of the off-diagonal self-energy elements leads to considerable approximation artifacts.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.165111</doi><orcidid>https://orcid.org/0000-0002-6082-1260</orcidid><orcidid>https://orcid.org/0000-0002-1733-8425</orcidid><orcidid>https://orcid.org/0000000260821260</orcidid><orcidid>https://orcid.org/0000000217338425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-10, Vol.104 (16), Article 165111 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1824703 |
source | American Physical Society Journals |
subjects | Algorithms Frequency response functions Green's functions Interpolation Mathematical analysis Matrices (mathematics) Quantum theory |
title | Analytical continuation of matrix-valued functions: Carathéodory formalism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20continuation%20of%20matrix-valued%20functions:%20Carath%C3%A9odory%20formalism&rft.jtitle=Physical%20review.%20B&rft.au=Fei,%20Jiani&rft.date=2021-10-06&rft.volume=104&rft.issue=16&rft.artnum=165111&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.165111&rft_dat=%3Cproquest_osti_%3E2595140620%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595140620&rft_id=info:pmid/&rfr_iscdi=true |