Two-stage dynamic deregulation of metabolism improves process robustness & scalability in engineered E. coli

We report that two-stage dynamic control improves bioprocess robustness as a result of the dynamic deregulation of central metabolism. Dynamic control is implemented during stationary phase using combinations of CRISPR interference and controlled proteolysis to reduce levels of central metabolic enz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2021-11, Vol.68 (C), p.106-118
Hauptverfasser: Ye, Zhixia, Li, Shuai, Hennigan, Jennifer N., Lebeau, Juliana, Moreb, Eirik A., Wolf, Jacob, Lynch, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue C
container_start_page 106
container_title Metabolic engineering
container_volume 68
creator Ye, Zhixia
Li, Shuai
Hennigan, Jennifer N.
Lebeau, Juliana
Moreb, Eirik A.
Wolf, Jacob
Lynch, Michael D.
description We report that two-stage dynamic control improves bioprocess robustness as a result of the dynamic deregulation of central metabolism. Dynamic control is implemented during stationary phase using combinations of CRISPR interference and controlled proteolysis to reduce levels of central metabolic enzymes. Reducing the levels of key enzymes alters metabolite pools resulting in deregulation of the metabolic network. Deregulated networks are less sensitive to environmental conditions improving process robustness. Process robustness in turn leads to predictable scalability, minimizing the need for traditional process optimization. We validate process robustness and scalability of strains and bioprocesses synthesizing the important industrial chemicals alanine, citramalate and xylitol. Predictive high throughput approaches that translate to larger scales are critical for metabolic engineering programs to truly take advantage of the rapidly increasing throughput and decreasing costs of synthetic biology. •Two-stage dynamic metabolic control enables deregulation of central metabolism.•Deregulation of the metabolic network improves process robustness.•Process robustness improves scalability from 96 well plates to instrumented bioreactors.•Rapid scale up from lab bioreactors to pilot bioreactors.
doi_str_mv 10.1016/j.ymben.2021.09.009
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1824251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109671762100149X</els_id><sourcerecordid>2578769158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6911d460d1468aba5e5ddc14c849d4f882b940fdb2c2364ed42d4aeda17e92b93</originalsourceid><addsrcrecordid>eNp9UcFu1DAUjBBIlNIv6MXigLgk-HmdxD5wQFUpSJW4lLPl2C-LV4ld_LxF-_c4bMWR0xvpzYxmNE1zDbwDDsPHQ3daJ4yd4AI6rjvO9YvmArge2hGUfPkPj8Pr5g3RgXOAXsNFszz8Ti0Vu0fmT9GuwTGPGffHxZaQIkszW7HYKS2BVhbWx5yekFg9DolYTtORStzge0bOLnYKSygnFiLDuA8Rq5lntx1z1eFt82q2C-HV871sfny5fbj52t5_v_t28_m-dZKr0g4awMuBe5CDspPtsffegXRKai9npcSkJZ_9JJzYDRK9FF5a9BZG1PW3u2zenX0TlWDIhYLup0sxoisGlJCih0r6cCbVLr-OSMWsgRwui42YjmREP6qxRulVpe7OVJcTUcbZPOaw2nwywM02gDmYvwOYbQDDtakDVNWnswpr1aeAeUuC0aEPeQviU_iv_g8fkZFa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578769158</pqid></control><display><type>article</type><title>Two-stage dynamic deregulation of metabolism improves process robustness &amp; scalability in engineered E. coli</title><source>Elsevier ScienceDirect Journals</source><creator>Ye, Zhixia ; Li, Shuai ; Hennigan, Jennifer N. ; Lebeau, Juliana ; Moreb, Eirik A. ; Wolf, Jacob ; Lynch, Michael D.</creator><creatorcontrib>Ye, Zhixia ; Li, Shuai ; Hennigan, Jennifer N. ; Lebeau, Juliana ; Moreb, Eirik A. ; Wolf, Jacob ; Lynch, Michael D.</creatorcontrib><description>We report that two-stage dynamic control improves bioprocess robustness as a result of the dynamic deregulation of central metabolism. Dynamic control is implemented during stationary phase using combinations of CRISPR interference and controlled proteolysis to reduce levels of central metabolic enzymes. Reducing the levels of key enzymes alters metabolite pools resulting in deregulation of the metabolic network. Deregulated networks are less sensitive to environmental conditions improving process robustness. Process robustness in turn leads to predictable scalability, minimizing the need for traditional process optimization. We validate process robustness and scalability of strains and bioprocesses synthesizing the important industrial chemicals alanine, citramalate and xylitol. Predictive high throughput approaches that translate to larger scales are critical for metabolic engineering programs to truly take advantage of the rapidly increasing throughput and decreasing costs of synthetic biology. •Two-stage dynamic metabolic control enables deregulation of central metabolism.•Deregulation of the metabolic network improves process robustness.•Process robustness improves scalability from 96 well plates to instrumented bioreactors.•Rapid scale up from lab bioreactors to pilot bioreactors.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2021.09.009</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Controlled proteolysis ; CRISPR ; Dynamic metabolic control ; High-throughput metabolic engineering ; Metabolic valves ; Process robustness ; Scalability ; Standardization ; Two-stage</subject><ispartof>Metabolic engineering, 2021-11, Vol.68 (C), p.106-118</ispartof><rights>2021 International Metabolic Engineering Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6911d460d1468aba5e5ddc14c849d4f882b940fdb2c2364ed42d4aeda17e92b93</citedby><cites>FETCH-LOGICAL-c408t-6911d460d1468aba5e5ddc14c849d4f882b940fdb2c2364ed42d4aeda17e92b93</cites><orcidid>0000-0002-8858-9651 ; 0000-0001-5385-6521 ; 0000-0003-4684-0673 ; 0000000288589651 ; 0000000346840673 ; 0000000153856521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S109671762100149X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1824251$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Zhixia</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Hennigan, Jennifer N.</creatorcontrib><creatorcontrib>Lebeau, Juliana</creatorcontrib><creatorcontrib>Moreb, Eirik A.</creatorcontrib><creatorcontrib>Wolf, Jacob</creatorcontrib><creatorcontrib>Lynch, Michael D.</creatorcontrib><title>Two-stage dynamic deregulation of metabolism improves process robustness &amp; scalability in engineered E. coli</title><title>Metabolic engineering</title><description>We report that two-stage dynamic control improves bioprocess robustness as a result of the dynamic deregulation of central metabolism. Dynamic control is implemented during stationary phase using combinations of CRISPR interference and controlled proteolysis to reduce levels of central metabolic enzymes. Reducing the levels of key enzymes alters metabolite pools resulting in deregulation of the metabolic network. Deregulated networks are less sensitive to environmental conditions improving process robustness. Process robustness in turn leads to predictable scalability, minimizing the need for traditional process optimization. We validate process robustness and scalability of strains and bioprocesses synthesizing the important industrial chemicals alanine, citramalate and xylitol. Predictive high throughput approaches that translate to larger scales are critical for metabolic engineering programs to truly take advantage of the rapidly increasing throughput and decreasing costs of synthetic biology. •Two-stage dynamic metabolic control enables deregulation of central metabolism.•Deregulation of the metabolic network improves process robustness.•Process robustness improves scalability from 96 well plates to instrumented bioreactors.•Rapid scale up from lab bioreactors to pilot bioreactors.</description><subject>Controlled proteolysis</subject><subject>CRISPR</subject><subject>Dynamic metabolic control</subject><subject>High-throughput metabolic engineering</subject><subject>Metabolic valves</subject><subject>Process robustness</subject><subject>Scalability</subject><subject>Standardization</subject><subject>Two-stage</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1DAUjBBIlNIv6MXigLgk-HmdxD5wQFUpSJW4lLPl2C-LV4ld_LxF-_c4bMWR0xvpzYxmNE1zDbwDDsPHQ3daJ4yd4AI6rjvO9YvmArge2hGUfPkPj8Pr5g3RgXOAXsNFszz8Ti0Vu0fmT9GuwTGPGffHxZaQIkszW7HYKS2BVhbWx5yekFg9DolYTtORStzge0bOLnYKSygnFiLDuA8Rq5lntx1z1eFt82q2C-HV871sfny5fbj52t5_v_t28_m-dZKr0g4awMuBe5CDspPtsffegXRKai9npcSkJZ_9JJzYDRK9FF5a9BZG1PW3u2zenX0TlWDIhYLup0sxoisGlJCih0r6cCbVLr-OSMWsgRwui42YjmREP6qxRulVpe7OVJcTUcbZPOaw2nwywM02gDmYvwOYbQDDtakDVNWnswpr1aeAeUuC0aEPeQviU_iv_g8fkZFa</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ye, Zhixia</creator><creator>Li, Shuai</creator><creator>Hennigan, Jennifer N.</creator><creator>Lebeau, Juliana</creator><creator>Moreb, Eirik A.</creator><creator>Wolf, Jacob</creator><creator>Lynch, Michael D.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8858-9651</orcidid><orcidid>https://orcid.org/0000-0001-5385-6521</orcidid><orcidid>https://orcid.org/0000-0003-4684-0673</orcidid><orcidid>https://orcid.org/0000000288589651</orcidid><orcidid>https://orcid.org/0000000346840673</orcidid><orcidid>https://orcid.org/0000000153856521</orcidid></search><sort><creationdate>202111</creationdate><title>Two-stage dynamic deregulation of metabolism improves process robustness &amp; scalability in engineered E. coli</title><author>Ye, Zhixia ; Li, Shuai ; Hennigan, Jennifer N. ; Lebeau, Juliana ; Moreb, Eirik A. ; Wolf, Jacob ; Lynch, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6911d460d1468aba5e5ddc14c849d4f882b940fdb2c2364ed42d4aeda17e92b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Controlled proteolysis</topic><topic>CRISPR</topic><topic>Dynamic metabolic control</topic><topic>High-throughput metabolic engineering</topic><topic>Metabolic valves</topic><topic>Process robustness</topic><topic>Scalability</topic><topic>Standardization</topic><topic>Two-stage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zhixia</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Hennigan, Jennifer N.</creatorcontrib><creatorcontrib>Lebeau, Juliana</creatorcontrib><creatorcontrib>Moreb, Eirik A.</creatorcontrib><creatorcontrib>Wolf, Jacob</creatorcontrib><creatorcontrib>Lynch, Michael D.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Zhixia</au><au>Li, Shuai</au><au>Hennigan, Jennifer N.</au><au>Lebeau, Juliana</au><au>Moreb, Eirik A.</au><au>Wolf, Jacob</au><au>Lynch, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-stage dynamic deregulation of metabolism improves process robustness &amp; scalability in engineered E. coli</atitle><jtitle>Metabolic engineering</jtitle><date>2021-11</date><risdate>2021</risdate><volume>68</volume><issue>C</issue><spage>106</spage><epage>118</epage><pages>106-118</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>We report that two-stage dynamic control improves bioprocess robustness as a result of the dynamic deregulation of central metabolism. Dynamic control is implemented during stationary phase using combinations of CRISPR interference and controlled proteolysis to reduce levels of central metabolic enzymes. Reducing the levels of key enzymes alters metabolite pools resulting in deregulation of the metabolic network. Deregulated networks are less sensitive to environmental conditions improving process robustness. Process robustness in turn leads to predictable scalability, minimizing the need for traditional process optimization. We validate process robustness and scalability of strains and bioprocesses synthesizing the important industrial chemicals alanine, citramalate and xylitol. Predictive high throughput approaches that translate to larger scales are critical for metabolic engineering programs to truly take advantage of the rapidly increasing throughput and decreasing costs of synthetic biology. •Two-stage dynamic metabolic control enables deregulation of central metabolism.•Deregulation of the metabolic network improves process robustness.•Process robustness improves scalability from 96 well plates to instrumented bioreactors.•Rapid scale up from lab bioreactors to pilot bioreactors.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ymben.2021.09.009</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8858-9651</orcidid><orcidid>https://orcid.org/0000-0001-5385-6521</orcidid><orcidid>https://orcid.org/0000-0003-4684-0673</orcidid><orcidid>https://orcid.org/0000000288589651</orcidid><orcidid>https://orcid.org/0000000346840673</orcidid><orcidid>https://orcid.org/0000000153856521</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2021-11, Vol.68 (C), p.106-118
issn 1096-7176
1096-7184
language eng
recordid cdi_osti_scitechconnect_1824251
source Elsevier ScienceDirect Journals
subjects Controlled proteolysis
CRISPR
Dynamic metabolic control
High-throughput metabolic engineering
Metabolic valves
Process robustness
Scalability
Standardization
Two-stage
title Two-stage dynamic deregulation of metabolism improves process robustness & scalability in engineered E. coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-stage%20dynamic%20deregulation%20of%20metabolism%20improves%20process%20robustness%20&%20scalability%20in%20engineered%20E.%20coli&rft.jtitle=Metabolic%20engineering&rft.au=Ye,%20Zhixia&rft.date=2021-11&rft.volume=68&rft.issue=C&rft.spage=106&rft.epage=118&rft.pages=106-118&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2021.09.009&rft_dat=%3Cproquest_osti_%3E2578769158%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578769158&rft_id=info:pmid/&rft_els_id=S109671762100149X&rfr_iscdi=true